Opendata, web and dolomites

CHERI

Chromatin targeting and remodelling by bacterial effectors in plant immunity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CHERI project word cloud

Explore the words cloud of the CHERI project. It provides you a very rough idea of what is the project "CHERI" about.

rely    receptor    intracellular    machinery    instead    certain    nature    overlapping    interact    senses    physically    human    lack    molecular    signals    connected    modifications    recognition    mechanisms    plant    virulence    proteins    signalling    found    successful    mount    environment    activation    modulated    agriculture    heteromeric    immunity    bacteria    resistance    mammals    cell    nuclear    disease    effector    interferes    health    effectors    causing    unclear    innate    converted    plants    bacterial    converge    intercepted    viruses    arabidopsis    histone    challenged    circulating    triggered    probes    suggest    underlying    host    unrelated    fungi    sites    capacity    systemic    disseminate    infection    perceive    remodelling    genes    immune    pathogens    unlike    forms    sustainable    fundamental    pathogen    pair    suppress    transduced    perturbations    structurally    domains    actions    elucidate    chromatin    components    hypothesize    functional    receptors    encoding    defence    basal   

Project "CHERI" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website http://www.mpipz.mpg.de/parker
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 159˙460.00

Map

 Project objective

In nature, plants are challenged by disease-causing pathogens such as viruses, bacteria and fungi. Understanding mechanisms of plant disease and disease resistance is of fundamental importance to sustainable agriculture and human health. Unlike mammals, plants lack a circulating immune system. Plants instead rely on the innate immune capacity of each cell and systemic signals that disseminate from infection sites. Successful pathogens use effectors to suppress plant immunity and cause disease. Plants have evolved disease resistance genes encoding immune receptors that perceive specific pathogen effectors to mount effector-triggered immunity. In Arabidopsis, a heteromeric pair of intracellular immune receptors forms a functional recognition complex which senses virulence activities of two structurally unrelated bacterial effectors at the nuclear chromatin. Results suggest that effector targeting of histone modifications and chromatin remodelling interferes with host basal immunity and that this is transduced by the receptor pair to activation of defence pathways. The underlying molecular mechanisms remain unclear. We have found that the two bacterial effectors interact with an overlapping set of chromatin-associated proteins and with certain immune receptor domains. We hypothesize that the effectors converge on the same chromatin machinery for promoting disease and that their actions are intercepted by the immune receptor system which is physically connected to basal immunity signalling components. By using the effectors as molecular probes, this proposal aims to elucidate how the chromatin environment is modulated during infection and how effector perturbations are converted to effective immunity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHERI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHERI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

DECEYEDE (2020)

The effects of aging in the control of eye movements and its relation to perceptual and motor decisions

Read More  

CHES (2020)

Resilience of Coastal Human-Environment Systems

Read More