Opendata, web and dolomites

THaCH SIGNED

The effects of hypercholesterolemia on tendon health (Tendon Health and CHolesterol)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 THaCH project word cloud

Explore the words cloud of the THaCH project. It provides you a very rough idea of what is the project "THaCH" about.

collagen    preventative    linking    models    association    muscle    putative    suitable    expertise    mechanisms    oxidized    entrapped    probe    leave    unknown    accumulate    altering    hypothesis    quality    glycosaminoglycans    extension    circulation    cell    tissue    tendons    hypercholesterolemia    impairing    demonstrated    laboratory    gene    fascicle    link    oxldl    health    interactions    cholesterol    impacts    inhibiting    socio    services    readily    hypotheses    phenotype    groups    implications    institutes    matrix    rehabilitation    life    negatively    medicine    extracellular    occupational    space    biology    strategies    orthopedic    mechanism    structure    reduce    disorders    area    researched    external    data    mechanics    ifm    explored    sliding    accumulates    function    underlying    union    poor    pathophysiology    musculoskeletal    healing    total    host    gag    demonstrates    examined    diseases    becomes    clinical    employs    expression    disability    extravascular    sciences    economic    normal    interfascicular    ldl    elevated    biomechanical    reversibility    individuals    tendon    accumulation   

Project "THaCH" data sheet

The following table provides information about the project.

Coordinator
QUEEN MARY UNIVERSITY OF LONDON 

Organization address
address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS
website: http://www.qmul.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 237˙349 €
 EC max contribution 237˙349 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-GF
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2022-03-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON UK (LONDON) coordinator 237˙349.00
2    UNIVERSITY OF BRITISH COLUMBIA CA (VANCOUVER) partner 0.00

Map

 Project objective

Musculoskeletal disorders, particularly to the muscle-tendon unit, are a major cause of occupational disability in the European Union. The link between high cholesterol and poor tendon function has recently been demonstrated by several groups. However, the underlying pathophysiology of this association remains unknown. Cholesterol is known to leave the circulation and accumulate in extracellular matrix through interactions between LDL and glycosaminoglycans (GAG). Tendons are GAG rich in the interfascicular matrix (IFM: a tendon structure facilitating collagen fascicle sliding and extension). One putative mechanism by which high cholesterol may impact tendon function is an accumulation of cholesterol and LDL in the IFM, impairing fascicle sliding and extension. In addition, LDL readily becomes oxidized (oxLDL) when entrapped in the extravascular space, and recent data demonstrates this negatively impacts tendon cell phenotype, altering normal gene expression. This proposal aims to enhance our understanding of hypercholesterolemia on tendon health; a highly under-researched area of significant clinical importance. It employs expertise in tissue mechanics and tendon cell biology available at the host and external institutes to probe the mechanisms linking high cholesterol and tendon pathophysiology. The underlying hypotheses are that in individuals with elevated total cholesterol and/or LDL, cholesterol accumulates with LDL in GAG-rich areas of tendon like the IFM, inhibiting tendon biomechanical function. This hypothesis will be explored using suitable laboratory models, allowing the reversibility of these changes and their impact on tendon adaptation and healing to be examined. The findings will have immediate implications for orthopedic sciences, preventative medicine and rehabilitation services, strategies and technology. They have the potential to improve quality of life and reduce the socio-economic costs associated with orthopedic and musculoskeletal diseases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THACH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THACH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

ROSETTA (2020)

Deciphering the Role of aberrant glycOSylation in the rEsponse to Targeted TherApies for breast cancer

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More