Opendata, web and dolomites

FraMoS TERMINATED

Multi-resolution Fracture Models for High-strength Steels: Fully Ductile Fracture to Quasi-cleavage Failure in Hydrogen Environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FraMoS project word cloud

Explore the words cloud of the FraMoS project. It provides you a very rough idea of what is the project "FraMoS" about.

eliminating    least    lack    initiation    expensive    continuum    microstructural    particles    linkage    trip    dislocations    assisted    tools    course    crack    complete    alloys    fidelity    models    describing    fracture    3d    recent    computing    materials    influence    environment    diffusion    embrittlement    nucleation    initiated    cover    unraveling    durable    macroscopic    describe    era    pursuit    mechanisms    accounting    destructive    contribution    bottlenecks    twip    propagation    predictions    cracking    cycle    scales    exascale    virtual    realistic    stronger    lieu    tip    quasi    entire    incorporate    heterogeneities    devastating    employing    deficiencies    tougher    trapping    recognition    damage    mechanism    void    microstructure    length    coalescence    hydrogen    accelerate    quest    hampered    cleavage    micromechanical    limitations    tomographic    predictive    he    ductile    hss    structure    interactions    oxford    relations    toughness    international    computational    mechanics    microcracks    spectrum    fundamental   

Project "FraMoS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.hems.ox.ac.uk
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-12-01   to  2018-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 195˙454.00

Map

 Project objective

Recent advances in Computational Mechanics are towards the development of predictive tools that can accelerate the 'Materials Development Cycle' by unraveling the linkage between macroscopic properties and microstructure. The availability of 3D tomographic tools and the era of Exascale computing have initiated the quest to develop stronger, tougher and more durable alloys by employing 'virtual predictions' in lieu of expensive destructive testing. However, our lack of understanding of the 'structure-toughness’ relations is one of the main bottlenecks in this pursuit. Moreover, the uptake of some of these new alloys (TRIP, TWIP etc) is hampered by the concerns of hydrogen (H) induced cracking. Existing models have limitations in describing the role of microstructural heterogeneities on mechanisms of fracture in HSS. The proposed research will develop high fidelity continuum models to cover the entire spectrum of mechanisms from fully ductile fracture to quasi-cleavage failure of HSS in H-environment. Among the various mechanisms of H-assisted cracking, hydrogen embrittlement (HE) is one of the most devastating, yet least understood, mechanism of failure in HSS. In this work, realistic models of void nucleation accounting for the dislocations interactions with the second phase particles will be developed. The proposed models of void growth and coalescence will incorporate the microstructural length scales, thus, eliminating the deficiencies of the existing 'damage models'. The micromechanical models of HE developed in this work will incorporate the influence of hydrogen on the initiation and propagation of microcracks leading to complete failure. These models will be integrated with the most advanced models of H-diffusion and trapping (being developed at Oxford) to describe the detailed mechanism of fracture at crack tip in HSS. It is expected that this work will bring, in due course, significant international recognition for its fundamental and applied contribution

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FRAMOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FRAMOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More