Opendata, web and dolomites

AQUARAMAN SIGNED

Pipet Based Scanning Probe Microscopy Tip-Enhanced Raman Spectroscopy: A Novel Approach for TERS in Liquids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AQUARAMAN project word cloud

Explore the words cloud of the AQUARAMAN project. It provides you a very rough idea of what is the project "AQUARAMAN" about.

technique    situ    raman    metallized    nowadays    brings    consistency    unavoidable    characterization    reliability    sensitivity    biology    phenomena    interfacial    liquid    optical    follow    tip    enhanced    fundamental    playing    ingenious    vacuum    air    electrolyte    stability    powerful    combines    spanning    tool    content    ters    surface    environments    unexplored    electrochemistry    limited    material    questions    water    reveal    chemistry    systematic    spatial    solid    intrinsic    undeniable    spm    heterogeneity    opportunity    resolution    materials    alternative    techniques    employment    dynamic    revolutionary    pipet    afm    experiments    unprecedented    chemical    science    possession    microscopy    classic    stm    proximities    pb    free    founded    unfortunately    platform    vibrational    unattainable    operate    label    structural    nano    scanning    manner    spectroscopy    liquids    probes    nanoscale    innovative    physics    failing    hindering    probe    physicochemical    surfaces   

Project "AQUARAMAN" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE 

Organization address
address: ROUTE DE SACLAY
city: PALAISEAU CEDEX
postcode: 91128
website: http://www.polytechnique.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙528˙442 €
 EC max contribution 1˙528˙442 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-07-01   to  2022-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FR (PALAISEAU CEDEX) coordinator 1˙528˙442.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 0.00

Map

 Project objective

Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science. Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique. We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques. We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AQUARAMAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AQUARAMAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

SERENiTi (2018)

Software Enhanced Research iN Transient kinetics

Read More