Opendata, web and dolomites

FreezeAlz

Theoretical prediction of spectral biomarkers for Alzheimer's disease enabled by highly efficient and adaptable mutli-level response methods

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FreezeAlz" data sheet

The following table provides information about the project.

Coordinator
KUNGLIGA TEKNISKA HOEGSKOLAN 

Organization address
address: BRINELLVAGEN 8
city: STOCKHOLM
postcode: 100 44
website: www.kth.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Project website https://www.kth.se/profile/carolink
 Total cost 173˙857 €
 EC max contribution 173˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-07-01   to  2019-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KUNGLIGA TEKNISKA HOEGSKOLAN SE (STOCKHOLM) coordinator 173˙857.00

Map

 Project objective

Luminescent conjugated oligothiophenes are highly promising candidates for biomarkers for amyloid misfolds and thereby for early-stage detection of neurodegenerative diseases such as Alzheimer’s and Parkinson's disease. The elucidation of the microscopic mechanism and design principles behind these biomarkers requires theoretical assistance. Finding suitable theoretical models that allow sufficiently accurate spectra calculations for such large, dynamic, and complex biomolecular systems is a highly challenging task: In practice, it is currently neither possible to include all possible factors, nor to rigorously test their importance for the actual simulation. There is, hence, a great need for efficient and adaptive theoretical models capable of incorporating the essential factors in spectra calculation of biomolecular systems sufficiently accurately. In order to devise an efficient and adaptable methodology for assisting the interpretation of existing spectra and predicting the performance of new candidates for biomarkers, we will combine the advantages of several state-of-the-art computational methods. More precisely, we will combine the so-called frozen density embedding scheme with linear scaling density functional theory techniques and incorporate additional polarization effects in a manner inspired by the polarizable embedding method. We will moreover devise efficient and pragmatically adaptable schemes to accurately capture vibrational coupling in these spectra. All these method developments will be done in close collaboration with groups conducting the actual experiments. In this way, a strong interdisciplinary research project will be established. Still, the formulation and implementation of the new methods will be as general as possible in order to devise flexible methods that can easily be adapted to assist the investigation of also other future scientific questions.

 Publications

year authors and title journal last update
List of publications.
2018 Carolin König, Robin Skånberg, Ingrid Hotz, Anders Ynnerman, Patrick Norman, Mathieu Linares
Binding sites for luminescent amyloid biomarkers from non-biased molecular dynamics simulations
published pages: 3030-3033, ISSN: 1359-7345, DOI: 10.1039/C8CC00105G
Chemical Communications 54/24 2019-10-03

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FREEZEALZ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FREEZEALZ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RESTRICTIONAPP (2019)

A multilinear approach to the restriction problem with applications to geometric measure theory, the Schrödinger equation and inverse problems

Read More  

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More