Opendata, web and dolomites

NANOCANCER SIGNED

Getting new insights into the radio-sensitization effects of nanoparticles in photon and charged particle therapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NANOCANCER project word cloud

Explore the words cloud of the NANOCANCER project. It provides you a very rough idea of what is the project "NANOCANCER" about.

employed    gd    enhanced    full    underlying    effectiveness    deeper    biochemical    purpose    sensitizers    enhancement    beams    sensitization    therapy    strategy    substantially    seems    action    killing    atomic    molecular    cells    physical    glioma    carlo    performing    insights    radiotherapy    rt    amplified    therapeutic    mechanisms    nanometre    cellular    breakthrough    au    ftir    effect    photon    combining    poor    conventional    nanoparticles    dose    spectroscopy    nanocancer    interdisciplinary    damages    multidisciplinary    prognosis    radio    biological    radiation    index    light    diseases    clear    amplification    nano    simulation    time    first    cell    vibrational    innovative    fourier    complementary    transport    np    interaction    tumor    biology    transform    damage    standard    respect    local    advantage    monte    realistic    radiobiology    shown    tumour    infrared    macromolecules    particle    microspectroscopy    charged    framework   

Project "NANOCANCER" data sheet

The following table provides information about the project.

Coordinator
CONSORCIO PARA LA CONSTRUCCION EQUIPAMIENTO Y EXPLOTACION DEL LABORATORIO DE LUZ SINCROTRON 

Organization address
address: CARRER DE LA LLUM 2-26
city: CERDANYOLA DEL VALLES BARCELONA
postcode: 8290
website: http://www.cells.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website https://www.cells.es/en/media/news/researchers-unveil-the-biochemical-effects-involved-in-nanoparticle-based-radiotherapy
 Total cost 158˙121 €
 EC max contribution 158˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2017
 Duration (year-month-day) from 2017-10-30   to  2019-10-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSORCIO PARA LA CONSTRUCCION EQUIPAMIENTO Y EXPLOTACION DEL LABORATORIO DE LUZ SINCROTRON ES (CERDANYOLA DEL VALLES BARCELONA) coordinator 158˙121.00

Map

 Project objective

The use of high-atomic-number nanoparticles (NP) as tumour radio-sensitizers has been recently proposed as a breakthrough in radiotherapy (RT). Numerous biological studies have shown the enhanced effectiveness in tumor cell killing when NP were associated to photon RT and, more recently, to charged particle therapy. However, the mechanisms of action are not clear yet. In addition to the damage due to a possible local dose enhancement (physical effects), the interaction of NP with essential biological macromolecules could lead to changes in the cells (biochemical effects) leading to an amplified effect of the radiation. Within this framework, the main goal of the NANOCANCER project is to get deeper insights into the mechanisms underlying the amplification of radiation effects of NP. For this purpose, I will use a multidisciplinary strategy to evaluate both the biochemical and physical effects involved in these innovative nano-RT approaches. Vibrational spectroscopy (Fourier transform infrared, FTIR, microspectroscopy) will be employed for the first time to investigate the biochemical features in glioma cells combining two high-Z standard nanoparticles (Au and Gd) and charged particle beams. Physical effects will be also assessed by performing complementary Monte Carlo simulation of radiation transport, which will allow a realistic modelling of early biological damages induced by the radiation at the nanometre scale. This interdisciplinary proposal will be essential to better characterize the radio-sensitization effects of NP in glioma cells and, in addition, will bring light to the present charged particle therapy radiobiology, which seems to lead to substantially different tumour responses with respect to conventional RT at the cellular and molecular level. The knowledge of these biochemical features will help researchers to develop RT by taking full advantage of the underlying biology an enhance the therapeutic index of RT for diseases with poor prognosis.

 Publications

year authors and title journal last update
List of publications.
2019 I. Martínez-Rovira, O. Seksek, I. Yousef
A synchrotron-based infrared microspectroscopy study on the cellular response induced by gold nanoparticles combined with X-ray irradiations on F98 and U87-MG glioma cell lines
published pages: 6352-6364, ISSN: 0003-2654, DOI: 10.1039/c9an01109a
The Analyst 144/21 2019-12-16
2019 Immaculada Martínez-Rovira, Olivier Seksek, Josep Puxeu, Joan Gómez, Martin Kreuzer, Tanja Dučić, Maria Josep Ferreres, Manel Artigues, Ibraheem Yousef
Synchrotron-based infrared microspectroscopy study on the radiosensitization effects of Gd nanoparticles at megavoltage radiation energies
published pages: 5511-5520, ISSN: 0003-2654, DOI: 10.1039/C9AN00792J
The Analyst 144/18 2019-10-29

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOCANCER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOCANCER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Mel.Photo.Protect (2019)

Unraveling the Photoprotecting Mechanism of Melanin - From a Library of Fragments to Simulation of Spectra and Function

Read More  

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More