Opendata, web and dolomites

TF-bind Determinants

Genomic binding of transcription factors as a function of DNA affinity and chromatin.

Total Cost €


EC-Contrib. €






Project "TF-bind Determinants" data sheet

The following table provides information about the project.


Organization address
city: BASEL
postcode: 4058

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website
 Total cost 187˙419 €
 EC max contribution 187˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2019-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Transcription factors (TFs) read cis-regulatory information encoded in the genome and by doing so, they establish gene expression patterns. However, TFs must compete with structural chromatin proteins such as nucleosomes for access to DNA, and this may partially explain why only a fraction of their sequence motifs in the genome are actually bound. It is unclear what features discriminate used from unused sites with similar motifs, in vivo, though it is likely that sensitivity of TFs to chromatin is critical for normal gene expression. For example, some TFs have reduced chromatin sensitivity, termed pioneer-factors, and are able to drive differentiation; even these bind a minority of cognate motifs in the genome. Such factors may nevertheless modify chromatin and expose motifs for TFs with higher sensitivity. Alternatively, chromatin proteins and modifications may be intrinsically directed by unidentified DNA sequence features. Though little is known about determines of TF-chromatin sensitivity, it is likely a function of DNA affinity and the ability to recruit chromatin-modifying activity. The complexity of chromatin/TF interactions necessitates a reductionist approach. The objectives of this project is to gain mechanistic understanding of chromatin-sensitivity and will use established methods to measure binding of ectopic TFs as a function TF properties and chromatin components. I will express exogenous TFs in mammalian cells and compare in vivo binding to in vitro DNA affinity and analyse their chromatin sensitivity (WP1). This setup enables me to modify and profile chromatin before and after expression, which will test the contribution these factors have on TF binding (WP2). Finally, I will test if manipulating the chromatin-modifying activity of an ectopic TF affects binding (WP3). These results will provide mechanistic insight into TF sensitivity to chromatin and should reveal general principles of binding hierarchies and the logic of cis-regulatory regions.


year authors and title journal last update
List of publications.
2019 Dominik Hartl, Arnaud R. Krebs, Ralph S. Grand, Tuncay Baubec, Luke Isbel, Christiane Wirbelauer, Lukas Burger, Dirk Schübeler
CG dinucleotides enhance promoter activity independent of DNA methylation
published pages: 554-563, ISSN: 1088-9051, DOI: 10.1101/gr.241653.118
Genome Research 29/4 2019-07-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TF-BIND DETERMINANTS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TF-BIND DETERMINANTS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More