Opendata, web and dolomites

3DFlameGT SIGNED

Evaluation of three-dimensional velocity field, mixing field, and flame-front in a model gas turbinecombustor

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 3DFlameGT project word cloud

Explore the words cloud of the 3DFlameGT project. It provides you a very rough idea of what is the project "3DFlameGT" about.

database    validated    deduce    radical    air    cluster    topology    becomes    instability    experimental    model    mixing    burner    network    cameras    academic    diagnostics    stabilized    images    ch2o    turbulent    intrusive    generate    conversion    2d    velocimetry    volume    combustor    flame    skill    nature    models    turbine    indispensable    mode    recorded    yag    complementary    as    instantaneous    stereoscopic    pulse    researcher    traces    concentration    flow    space    interaction    particle    flames    fluorescence    reconstruct    slices    separated    nd    dominant    technique    pressure    combustion    fuel    laser    correlated    point    training    resolution    numerical    engine    ensures    swirl    speed    evaluation    readiness    gas    energy    sheets    front    play    bunsen    planar    diversify    automotive    head    scanning    lasers    fellow    competitiveness    assembled    image    generation    parallel    noted    temporal    3d    mimic    trl   

Project "3DFlameGT" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-19   to  2020-03-18

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 183˙454.00

Map

 Project objective

As noted by European turbine network, gas turbine is and will remain dominant mode of energy conversion. An advanced experimental study of a model gas turbine combustor is proposed. The lasers play indispensable role in the experimental combustion research due to the associated non-intrusive nature. The laser diagnostics have evolved from a point measurement to planar measurement (2D) over the years. The objective of the present work is to develop novel laser diagnostics to deduce instantaneous 3D fields of the flow, air/fuel mixing, and flame-front topology in a 'volume'. The proposed technique will be applied to a model gas turbine combustor operating with and without combustion instability. A scanning stereoscopic Particle Image Velocimetry (flow field) and Laser Induced Fluorescence of CH2O radical (flame-front) and of fuel concentration will be assembled correlated with pressure traces. A 4 head Nd:YAG laser cluster will generate 4 parallel laser sheets separated in space and images will be recorded by high speed cameras. The novel use of laser cluster ensures high pulse energy and temporal resolution. Image processing will be developed to reconstruct the 3D fields from the planar slices. The approach will be validated in a Bunsen burner before applying it to swirl stabilized flames that mimic a typical gas turbine combustor. The technology readiness level (TRL) of the research will reach between TRL 3 to 4. The proposed research will diversify the skill set of the researcher and associated complementary training will ensure that the fellow becomes an established academic researcher. The impact of this work is the generation of a unique 3D flame database, which is of great importance for the understanding of turbulent flame-flow interaction and the evaluation of advanced numerical combustion models. Thus, the proposed research will enhance European competitiveness in gas turbine design and can have an impact on automotive engine development.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DFLAMEGT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DFLAMEGT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

CP-FTmmW Aminogen (2020)

Chemistry and structure of aminogen radicals using chirped-pulse Fourier transform (sub)millimeter rotational spectroscopy

Read More