Opendata, web and dolomites

PRO_PHAGE SIGNED

Impact and interaction of prophage elements in bacterial host strains of biotechnological relevance

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PRO_PHAGE project word cloud

Explore the words cloud of the PRO_PHAGE project. It provides you a very rough idea of what is the project "PRO_PHAGE" about.

significantly    applicable    benchmarked    regulatory    throughput    unexplored    genomic    diverse    prey    genomes    pursuing    improvement    metabolic    spontaneous    broadly    inhabitants    product    integrate    temperate    resolution    fluorescence    triggers    purpose    interaction    microbes    sorting    resource    activated    generation    activation    close    reveal    phenotyping    subsequent    ht    decipher    bacteria    microbial    abundant    flexible    combining    viruses    engineering    traits    earth    genetic    will    generate    shaped    integration    phages    hosts    fitness    host    compounds    bioinformatic    evolution    dynamics    dna    foreign    mutually    molecular    single    illustrated    bacteriophages    cell    industrial    sequencing    xenogeneic    sustainable    insights    workflow    association    genome    transition    immense    proteins    risks    population    almost    analysed    silencing    expression    unprecedented    strains    beneficial    ngs    added    phage    prophages    chassis    pro    explorative    encoded    gene    bacterial    bioeconomy    virus   

Project "PRO_PHAGE" data sheet

The following table provides information about the project.

Coordinator
FORSCHUNGSZENTRUM JULICH GMBH 

Organization address
address: WILHELM JOHNEN STRASSE
city: JULICH
postcode: 52428
website: www.fz-juelich.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙482˙672 €
 EC max contribution 1˙482˙672 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FORSCHUNGSZENTRUM JULICH GMBH DE (JULICH) coordinator 1˙482˙672.00

Map

 Project objective

Phages, viruses that prey on bacteria, are the most abundant and diverse inhabitants of the Earth. Temperate bacteriophages are able to integrate into the host genome and maintain as prophages a long-term association with their host. Illustrated by the development of mutually beneficial traits, this close interaction between host and virus has significantly shaped bacterial evolution. However, the immense genetic resources of phage genomes still remain almost unexplored. For the transition to a sustainable bioeconomy, we strongly depend on microbes as hosts for the production of value-added compounds. PRO_PHAGE will exploit recent advances in next-generation sequencing (NGS), single-cell analysis, and high-throughput (HT) phenotyping to evaluate the impact of phage elements on host fitness and to use this knowledge for the improvement of future metabolic engineering approaches. By combining an explorative approach with subsequent molecular analysis of selected targets, PRO_PHAGE will deliver novel insights into this genetic resource and will reveal the risks and potential for metabolic engineering by pursuing four major objectives. 1) Based on a comprehensive bioinformatic analysis, the impact of phage elements will be studied by HT phenotyping of selected strains. 2) The regulatory interaction of phage and host will be analysed by focusing on host-encoded xenogeneic silencing proteins and their role in the integration of foreign DNA. 3) The spontaneous activation of phage elements will be studied at the genomic scale to decipher molecular triggers and their impact on host gene expression. For this purpose, a novel workflow combining fluorescence-activated cell sorting and NGS will be developed, which will be broadly applicable for studying microbial population dynamics at unprecedented resolution. 4) Finally, the insights obtained will be benchmarked for metabolic engineering approaches in order to generate robust and flexible chassis strains for industrial product

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PRO_PHAGE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PRO_PHAGE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

AST (2019)

Automatic System Testing

Read More