Opendata, web and dolomites

DIAMONDCOR SIGNED

A molecular approach to treat diabetes mellitus onset dependent coronaropathy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DIAMONDCOR" data sheet

The following table provides information about the project.

Coordinator
KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN 

Organization address
address: ISMANINGER STRASSE 22
city: MUENCHEN
postcode: 81675
website: http://www.med.tu.muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙490˙529 €
 EC max contribution 1˙490˙529 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN DE (MUENCHEN) coordinator 1˙490˙529.00

Map

 Project objective

In Europe, 59 million patients suffer from diabetes mellitus with health costs of 142 billion Euros per year. As one of the most challenging consequences, diabetes inflicts cardiovascular disease leading to cardiomyopathy and cardiac death. A global, current aim lies in preventing cardiac complications in patients with diabetes mellitus. In pathogenesis of diabetic cardiomyopathy, the role of microvascular processes remains largely elusive; my proposal aims at solving this key question – an impossible mission so far. As attractive therapeutic concept and overall objective, the present proposal aims at exploiting microvascular mechanisms for preventing and treating diabetic cardiomyopathy. I will study a novel, unique transgenic pig model of diabetes mellitus combined with advanced, patient compatible molecular imaging. We pioneered distinct genetic manipulations in pigs, including adeno-associated viral vectors (AAV) for microvessel stabilization as well as AAV-based CrispR/Cas9 transduction for in vivo genome editing. Using this cutting edge technology, I could decipher an important role for microvascular capillary rarefaction in the development of diabetic cardiomyopathy in my previous work. In the present proposal, I aim at determining 1. novel, microvascular-focused therapeutic targets for diabetic cardiomyopathy 2. the effect of reduced microvascular damage on myocardial function in diabetes, both in the absence and presence of ischemia. My approach will implement targeting microvessels as new paradigm for treating diabetic cardiomyopathy. I will identify novel therapeutic targets for tailored drug development by industry and academia. My planned work will improve the success rate of clinical trials for the benefit of patients suffering diabetic cardiomyopathy and putatively other cardiac diseases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DIAMONDCOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DIAMONDCOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

SUExp (2018)

Strategic Uncertainty: An Experimental Investigation

Read More