Opendata, web and dolomites

COR-RAND SIGNED

Corrector equations and random operators

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COR-RAND" data sheet

The following table provides information about the project.

Coordinator
SORBONNE UNIVERSITE 

Organization address
address: 21 RUE DE L'ECOLE DE MEDECINE
city: PARIS
postcode: 75006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙540˙000 €
 EC max contribution 1˙540˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SORBONNE UNIVERSITE FR (PARIS) coordinator 1˙207˙500.00
2    UNIVERSITE LIBRE DE BRUXELLES BE (BRUXELLES) participant 332˙500.00

Map

 Project objective

'Consider a partial differential equation (PDE) with random coefficients as in engineering or applied physics: When combined with a spatial scale separation, the randomness and the differential operator interact to give rise to some effective behavior. The recent growing mathematical activity in this domain has led to a ``seemingly' complete theory of stochastic homogenization of linear elliptic operators. Central to this theory is the so-called corrector equation, a degenerate elliptic equation posed on the (infinite-dimensional) probability space. The context of linear elliptic operators yields the simplest such equation. Time-dependent and/or nonlinear PDEs also involve corrector equations (or a family thereof), albeit with a significantly more complex structure. Their study and use to characterize the large-scale/time behavior of solutions of PDEs with random coefficients are at the heart of this project. Whereas the relevance of corrector equations is clear in problems such as diffusion in random media, sedimentation of randomly placed particles in a fluid, or water waves on a rough bottom, it is less obvious for the long-time behavior of waves in disordered media. The latter is related to the spectrum of the associated random elliptic operator, the characterization of which still remains a largely open question today. We propose to relate the long-time behavior of waves to the properties of a family of corrector equations. These corrector equations are widely unstudied and offer many analytical challenges. They constitute the first half of the project. Even in the ``well-understood' setting of linear elliptic operators, this requires to revisit the corrector equation in the light of much weaker topologies than considered before. The second half of the project aims at using correctors to establish the large-scale behavior of solutions as random objects. This may involve surprising quantities such as the recently introduced ``homogenization commutator'.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COR-RAND" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COR-RAND" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

DYMOLAMO (2018)

Dynamic Modeling of Labor Market Mobility and Human Capital Accumulation

Read More