Opendata, web and dolomites

BHSandAADS SIGNED

The Black Hole Stability Problem and the Analysis of asymptotically anti-de Sitter spacetimes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BHSandAADS" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙999˙755 €
 EC max contribution 1˙999˙755 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 1˙999˙755.00

Map

 Project objective

The present proposal is concerned with the analysis of the Einstein equations of general relativity, a non-linear system of geometric partial differential equations describing phenomena from the bending of light to the dynamics of black holes. The theory has recently been confirmed in a spectacular fashion with the detection of gravitational waves.

The main objective of the proposal is to consolidate my research group based at Imperial College by developing novel mathematical techniques that will fundamentally advance our understanding of the Einstein equations. Here the proposal builds on mathematical progress in the last decade resulting from achievements in the fields of partial differential equations, differential geometry, microlocal analysis and theoretical physics.

The Black Hole Stability Problem A major open problem in general relativity is to prove the non-linear stability of the Kerr family of black hole solutions. Recent advances in the problem of linear stability made by the PI and collaborators open the door to finally address a complete resolution of the stability problem. In this proposal we will describe what non-linear techniques will need to be developed in addition to achieve this goal. A successful resolution of this program would conclude an almost 50-year-old problem.

The Analysis of asymptotically anti-de Sitter (aAdS) spacetimes We propose to prove the stability of pure AdS if so-called dissipative boundary conditions are imposed at the boundary. This result would align with the well-known stability results for the other maximally-symmetric solutions of the Einstein equations, Minkowski space and de Sitter space. As a second -- related -- theme we propose to formulate and prove a unique continuation principle for the full non-linear Einstein equations on aAdS spacetimes. This goal will be achieved by advancing techniques that have recently been developed by the PI and collaborators for non-linear wave equations on aAdS spacetimes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BHSANDAADS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BHSANDAADS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NeuroMag (2019)

The Neurological Basis of the Magnetic Sense

Read More  

Life-Inspired (2019)

Life-inspired complex molecular systems controlled by enzymatic reaction networks

Read More  

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More