Opendata, web and dolomites

DisorMetox SIGNED

Disorder and Order in the Conversion Mechanism of Metal Oxides in Lithium-ion Batteries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DisorMetox project word cloud

Explore the words cloud of the DisorMetox project. It provides you a very rough idea of what is the project "DisorMetox" about.

last    proven    expert    oxides    class    monte    electrode    investigation    materials    view    anode    formula    andrew    model    performance    batteries    amorphous    thermodynamics    analytical    rmc    capacities    devoted    iron    good    undergo    hidden    hosted    hysteresis    pulverisation    series    overcome    library    scattering    reverse    stable    mechanistic    decade    chemistry    mxoy    considerable    carlo    efficiency    nanostructuring    apparent    ion    systematic    conventional    efforts    defected    nanoscopic    manganese    manifest    ray    phases    obstacles    commercial    metal    fundamentals    material    libs    structural    neutron    critical    oxford    drawn    identification    total    compounds    difficult    conversion    binary    variations    coexistence    earlier    multiple    transition    data    found    constituting    heterogeneity    unusual    reaction    accurate    quantitative    prof    characterization    structures    crystallographic    disordered    disorder    functional    desirable    hindering    emphasis    reactions    chemical    coulombic    goodwin    electron    characterisation    li    compositional   

Project "DisorMetox" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 195˙454.00

Map

 Project objective

Binary transition metal oxides (MxOy) have been studied as anode electrode materials for Li-ion batteries (LIBs) for many years. Defined as a class of conversion material, these MxOy undergo multi-electron reactions (per formula unit) leading to highly desirable capacities and have drawn considerable attention. Over the last decade, most of the earlier efforts were devoted to material nanostructuring, which has proven effective to enhance the overall material performance. However, critical issues such as the large hysteresis and low Coulombic efficiency remain key obstacles hindering the commercial application of MxOy. To overcome these obstacles requires a good understanding of the reaction fundamentals, which has yet been achieved due to the challenges involved in the characterisation of these MxOy. Previous mechanistic studies found that these MxOy undergo a chemical pulverisation leading to coexistence of multiple nanoscopic/defected or even amorphous/disordered phases. In view of these complex structural features and high heterogeneity of the system, it is difficult for a quantitative and accurate phase identification and structural characterization using conventional analytical approaches. This proposal will, therefore, develop a novel approach based on reverse Monte Carlo (RMC) method using the X-ray/neutron total scattering data, to study the reaction thermodynamics of these MxOy in the LIBs with emphasis on the investigation of the (apparent) structural disorder and (hidden) order present in the system. The proposed project will target a series of iron and manganese oxides as model compounds because they are the most studied conversion MxOy and their stable phases manifest considerable compositional/crystallographic variations constituting a large library of materials for a systematic study. The project will be hosted by Prof. Andrew Goodwin (Oxford Chemistry), an expert in studying complex structures of functional materials and their unusual properties.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISORMETOX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISORMETOX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

ErgThComplexSys (2020)

Ergodic theory for complex systems: a rigorous study of dynamics on heterogeneous networks

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More