Opendata, web and dolomites

DisorMetox SIGNED

Disorder and Order in the Conversion Mechanism of Metal Oxides in Lithium-ion Batteries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DisorMetox project word cloud

Explore the words cloud of the DisorMetox project. It provides you a very rough idea of what is the project "DisorMetox" about.

binary    andrew    last    materials    drawn    performance    analytical    considerable    devoted    monte    good    crystallographic    reverse    neutron    formula    multiple    critical    libs    metal    reactions    rmc    systematic    view    earlier    phases    hindering    batteries    stable    ray    anode    manifest    material    quantitative    mxoy    reaction    compositional    difficult    variations    efforts    data    accurate    efficiency    transition    class    nanostructuring    conventional    chemical    proven    heterogeneity    characterisation    disordered    emphasis    pulverisation    electrode    structural    amorphous    thermodynamics    functional    hysteresis    coexistence    coulombic    prof    conversion    hidden    chemistry    mechanistic    structures    library    oxford    obstacles    electron    found    identification    goodwin    compounds    model    li    ion    nanoscopic    oxides    iron    investigation    hosted    unusual    capacities    fundamentals    decade    carlo    expert    desirable    total    scattering    apparent    defected    overcome    manganese    series    commercial    undergo    disorder    constituting    characterization   

Project "DisorMetox" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 195˙454.00

Map

 Project objective

Binary transition metal oxides (MxOy) have been studied as anode electrode materials for Li-ion batteries (LIBs) for many years. Defined as a class of conversion material, these MxOy undergo multi-electron reactions (per formula unit) leading to highly desirable capacities and have drawn considerable attention. Over the last decade, most of the earlier efforts were devoted to material nanostructuring, which has proven effective to enhance the overall material performance. However, critical issues such as the large hysteresis and low Coulombic efficiency remain key obstacles hindering the commercial application of MxOy. To overcome these obstacles requires a good understanding of the reaction fundamentals, which has yet been achieved due to the challenges involved in the characterisation of these MxOy. Previous mechanistic studies found that these MxOy undergo a chemical pulverisation leading to coexistence of multiple nanoscopic/defected or even amorphous/disordered phases. In view of these complex structural features and high heterogeneity of the system, it is difficult for a quantitative and accurate phase identification and structural characterization using conventional analytical approaches. This proposal will, therefore, develop a novel approach based on reverse Monte Carlo (RMC) method using the X-ray/neutron total scattering data, to study the reaction thermodynamics of these MxOy in the LIBs with emphasis on the investigation of the (apparent) structural disorder and (hidden) order present in the system. The proposed project will target a series of iron and manganese oxides as model compounds because they are the most studied conversion MxOy and their stable phases manifest considerable compositional/crystallographic variations constituting a large library of materials for a systematic study. The project will be hosted by Prof. Andrew Goodwin (Oxford Chemistry), an expert in studying complex structures of functional materials and their unusual properties.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISORMETOX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISORMETOX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More