Opendata, web and dolomites


Mechanisms of K stable isotope fractionation in vertebrates and significance to their energy metabolism

Total Cost €


EC-Contrib. €






 BioIsoK project word cloud

Explore the words cloud of the BioIsoK project. It provides you a very rough idea of what is the project "BioIsoK" about.

reg    biodiversity    later    isotope    unexplored    functions    bioessential    cell    vertebrates    tim    phylogenetic    body    cu    proteus    spectrometry    potassium    elliott    class    reconstruction    rates    evolution    cycling    fe    hindrances    dynamics    modern    varying    notably    precious    mechanisms    ratios    coupled    energy    perspectives    ecological    itself    mc    tissues    vertebrate    classes    species    inaccessible    reared    ms    unprecedented    first    traits    unraveling    metabolism    thermophysiology    physiological    collector    metals    opened    collision    intensity    prototype    advent    organisms    fairly    metabolic    biological    icp    mg    isotopes    zn    metal    spectrometers    inherent    inductively    group    behavioral    ecosystems    mass    principally    plasma    reaction    driving    natural    otherwise    origins    ca    stable    apprehending    extinct    assets    constitute    turned    technologies    thermo    dependent    fisher    democratization    fossil    compositions   

Project "BioIsoK" data sheet

The following table provides information about the project.


Organization address
postcode: BS8 1QU

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2020-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 183˙454.00


 Project objective

The reconstruction of physiological and ecological traits of extinct organisms is crucial for apprehending the dynamics of the evolution of species and ecosystems as well as the origins of modern biodiversity. The recent advent of the use of natural stable isotopes of bioessential metals is principally related to the democratization of multi-collector inductively coupled plasma mass spectrometers (MC-ICP-MS). These isotope systems (Mg, Ca, Cu, Fe or Zn) opened up unprecedented perspectives for the study of their cycling in past and present vertebrate organisms and turned out to be precious assets for the unraveling of otherwise inaccessible biological features of fossil organisms, being ecological, behavioral or physiological characteristics. Potassium (K) is a bioessential metal in all vertebrates, where its cycling intensity is notably dependent on their metabolic rates, the later varying itself with thermophysiology from a phylogenetic class to another or with body mass within a given class. Due to its crucial biological functions as well as the observed significant effects of biological processes on its isotope ratios, K isotopes constitute a highly promising novel isotope system for the study of vertebrate metabolism. However, the K stable isotope compositions of vertebrate tissues are currently fairly unexplored, notably due to major technical hindrances, inherent to the existing mass spectrometry technologies. This project aims first to develop a reliable method of K stable isotope analysis using the state-of-the-art “Proteus” prototype MC-ICP-MS implemented with the collision-reaction cell technology and developed by Tim Elliott group and Thermo Fisher®. This method will then be used for analysis of tissues from vertebrates of various classes reared in controlled conditions. This will allow identifying the main mechanisms driving the isotope compositions of vertebrate tissues and assess their potential for the study of vertebrates energy metabolism.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOISOK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOISOK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SIMIS (2020)

Strongly Interacting Mass Imbalanced Superfluid with ultracold fermions

Read More  

IPG_CORE (2019)

Looking for the Impersonal Core -- Impersonal Pronouns across Germanic languages

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More