Opendata, web and dolomites

DDQF SIGNED

Dipolar Droplets in Quantum Ferrofluids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DDQF project word cloud

Explore the words cloud of the DDQF project. It provides you a very rough idea of what is the project "DDQF" about.

finite    last    generation    reserved    becs    zero    dense    crystal    pave    published    close    quantum    create    opportunity    variety    earth    local    excitations    turn    largely    created    flexible    lived    technologies    uniquely    rare    employed    positioned    dominant    density    few    atom    1000    ing    midst    remarkable    discovery    emphasis    phenomena    intriguing    subsequent    thanks    cooled    situation    pivotal    billionths    droplets    dipole    experiment    degree    temperature    prominent    supersolids    magnetic    events    bose    stabilisation    interactions    self    presenting    dramatic    dipolar    theories    revealing    atoms    condensates    gases    unforeseen    ferrofluid    experimentalists    simulations    einstein    physics    realising    cleanest    approximation    stabilised    questions    dilute    answer    fluctuations    clarity    fundamental    body    possesses    absolute    droplet    revolution    atomic    nature    demonstrated    experiments    tackle    collapsing    roton    liquid    physical   

Project "DDQF" data sheet

The following table provides information about the project.

Coordinator
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER 

Organization address
address: Welfengarten 1
city: HANNOVER
postcode: 30167
website: www.uni-hannover.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER DE (HANNOVER) coordinator 159˙460.00

Map

 Project objective

Cooled to a few billionths of a degree above absolute zero atomic Bose-Einstein condensates (BECs) are some of the cleanest, most flexible, many-body quantum systems available. They have been used to answer fundamental questions for a large variety of physical phenomena with remarkable clarity, as well as for the discovery of new physics. The field is currently in the midst of a revolution, thanks largely to the development of such key technologies as the ability to create dilute BECs of rare-earth elements, realising the quantum ferrofluid in which each atom possesses a large magnetic dipole. Last year, in a dramatic turn of events, an experiment was published in Nature revealing the discovery of an unforeseen, novel phase of matter: the dilute, dipolar quantum liquid. This was created by the self-stabilisation of a collapsing quantum ferrofluid and the subsequent formation of a crystal of long-lived dipolar droplets, with around 1000 atoms per droplet. It has been demonstrated that each droplet is stabilised by quantum fluctuations, presenting a rare opportunity to investigate a dilute system in which the role of quantum fluctuations is dominant, a situation typically reserved for dense matter. We propose to study the exciting new physics resulting from dipolar interactions and quantum fluctuations, with a particular emphasis on the three most intriguing and timely topics in the physics of dipolar gases: (1) roton excitations, (2) quantum droplets, and (3) dipolar supersolids. To answer pivotal questions for these topics we will develop challenging novel methods, including finite-temperature theories and simulations beyond the currently employed local-density approximation. In close collaboration with top experimentalists in the field, this project will pave the way for a new generation of experiments on dipolar gases. This proposal is uniquely positioned to tackle some of the most prominent and timely questions of the field.

 Publications

year authors and title journal last update
List of publications.
2018 Au-Chen Lee, D. Baillie, R. N. Bisset, P. B. Blakie
Excitations of a vortex line in an elongated dipolar condensate
published pages: , ISSN: 2469-9926, DOI: 10.1103/physreva.98.063620
Physical Review A 98/6 2020-04-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DDQF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DDQF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More  

PreSpeech (2018)

Predicting speech: what and when does the brain predict during language comprehension?

Read More  

Inflapoptosis (2019)

Gasdermin D is a novel effector in the extrinsic apoptosis pathway

Read More