Opendata, web and dolomites

DIRECT Therapies SIGNED

Diabetes Immunoengineering: Redesigning Encapsulated Cell Transplant Therapies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DIRECT Therapies project word cloud

Explore the words cloud of the DIRECT Therapies project. It provides you a very rough idea of what is the project "DIRECT Therapies" about.

young    daily    transplantation    science    quality    medicine    renowned    bridging    cell    therapy    meets    immune    vision    patients    background    islet    chemistry    people    risk    councils    scientific    successful    limitation    connects    internationally    drug    facilitates    host    diabetes    restore    encapsulated    immunology    hospital    training    trials    suppression    boston    engineering    human    talented    global    researcher    combining    healthcare    insulin    immunoengineering    expertise    370    medical    specified    direct    school    road    impaired    lives    worldwide    regenerative    uk    proving    redesigning    innovation    encapsulation    immunosuppressive    clinical    function    patient    materials    million    opportunistic    integrative    world    requirement    pathogens    career    transplant    removing    localised    multifunctional    lifetimes    gap    map    nottingham    harvard    remainder    biomaterials    innovative    offers    drugs    life    outgoing    therapies    opportunity    follows    tissue    children   

Project "DIRECT Therapies" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF NOTTINGHAM 

Organization address
address: University Park
city: NOTTINGHAM
postcode: NG7 2RD
website: www.nottingham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 269˙857 €
 EC max contribution 269˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-GF
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF NOTTINGHAM UK (NOTTINGHAM) coordinator 269˙857.00
2    CHILDREN'S HOSPITAL CORPORATION US (BOSTON) partner 0.00

Map

 Project objective

Diabetes Immunoengineering: Redesigning Encapsulated Cell Transplant Therapies Diabetes remains a global healthcare challenge, affecting 370 million people worldwide. Islet transplantation offers the potential to restore insulin function in diabetes-1 patients, and is proving successful in human clinical trials. However a major limitation is the requirement for patients to take global immunosuppressive drugs, often daily, for the remainder of their lives. These drugs can impact the quality of life for the patient, and may lead to an impaired immune system at risk of opportunistic pathogens. The scientific aim of this project is to develop innovative multifunctional materials for diabetes-1 cell therapies; those that can better support islet function and also direct the host immune system, removing the need for global immune suppression and enhancing transplant lifetimes. This project connects a talented young researcher with a background in chemistry, biomaterials science and immunoengineering, to a host institution with expertise in drug delivery and tissue engineering (Nottingham), and an internationally renowned outgoing institution (Boston Children's Hospital, Harvard Medical School) with expertise in transplant encapsulation and diabetes therapies. Combining the localised drug delivery expertise of the host institution, the diabetes-1 cell therapy transplant knowledge of the outgoing institution, and the researcher’s own expertise in immunoengineering presents a unique opportunity and new approach to addressing this healthcare challenge, and facilitates development of the researcher's career through a specified training-in-research program. Bridging the gap between the transplant immunology, biomaterials and drug delivery fields in this way meets the “Open Innovation, Open Science, Open to the World” EU vision towards Open Science and follows the road map for integrative research proposed by the UK Medical Research Councils for regenerative medicine research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DIRECT THERAPIES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DIRECT THERAPIES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More