Opendata, web and dolomites

STRATOFLY SIGNED

Stratospheric Flying Opportunities for High-Speed Propulsion Concepts

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STRATOFLY project word cloud

Explore the words cloud of the STRATOFLY project. It provides you a very rough idea of what is the project "STRATOFLY" about.

readiness    haul    performance    indicated    teams    easily    progressed    six    board    first    apart    formulation    technological    scientific    industrial    altitudes    nevertheless    2050    predicts    follow    last    commercially    levels    realize    lower    sound    emission    economic    regulatory    environmentally    compatibility    human    airframes    atmosphere    aerodynamics    least    globally    sustainable    covers    basis    aircraft    showing    transport    highest    acceptance    reachable    viability    functional    validity    socio    perform    propulsion    environmental    social    relies    maybe    stratospheric    trl    speed    exploited    noise    attractive    capacity    rates    troposphere    rarely    feasibility    regular    aviation    simultaneously    layer    roadmaps    travels    2035    configuration    climate    flight    exploitable    technologies    fly    integration    presently    barriers    vision    elaborated    disciplines    passenger    parametric    routes    demand    fuel    fold    contrary    directive    speeds    mapping    commercial    stratosphere    shown   

Project "STRATOFLY" data sheet

The following table provides information about the project.

Coordinator
POLITECNICO DI TORINO 

Organization address
address: CORSO DUCA DEGLI ABRUZZI 24
city: TORINO
postcode: 10129
website: www.polito.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 4˙000˙000 €
 EC max contribution 4˙000˙000 € (100%)
 Programme 1. H2020-EU.3.4. (SOCIETAL CHALLENGES - Smart, Green And Integrated Transport)
 Code Call H2020-MG-2017-Two-Stages
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2020-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    POLITECNICO DI TORINO IT (TORINO) coordinator 375˙000.00
2    DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT EV DE (KOELN) participant 650˙000.00
3    INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES BE (RHODE SAINT GENESE) participant 600˙000.00
4    CENTRO ITALIANO RICERCHE AEROSPAZIALI SCPA IT (CAPUA - CASERTA) participant 515˙000.00
5    TECHNISCHE UNIVERSITAT HAMBURG DE (HAMBURG) participant 400˙000.00
6    OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES FR (PALAISEAU) participant 350˙000.00
7    STICHTING NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM NL (AMSTERDAM) participant 325˙000.00
8    FUNDACION DE LA INGENIERIA CIVIL DE GALICIA ES (LA CORUNA) participant 315˙000.00
9    TOTALFORSVARETS FORSKNINGSINSTITUT SE (STOCKHOLM) participant 270˙000.00
10    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 200˙000.00

Map

 Project objective

The stratosphere is the highest layer in the atmosphere where aircraft can still fly. Nevertheless, it is presently rarely exploited for commercial aviation. As Europe’s Vision for Aviation predicts globally a six-fold increase in passenger by 2050, flight levels above the troposphere become attractive and maybe the only way to realize this.

While the lower stratosphere could still be reachable for classical aircraft, the higher altitudes would demand for higher speeds. Various technologies, systems and novel aircraft concepts related to high-speed transport have progressed rapidly over the last 20 years showing their technical feasibility and readiness up to TRL-3. Technology roadmaps elaborated by industrial and research teams indicated their readiness-level can easily be brought up to TRL-6 by 2035 provided the related application can be shown to be commercially exploitable.

The first project goal covers the multi-functional integration of propulsion, aerodynamics, airframes and on-board systems across various disciplines to define and detail a high-speed aircraft configuration enabling long-haul travels. However, Europe should have simultaneously a directive which flight altitudes are environmentally sustainable on the basis of fuel type and emission rates. This parametric mapping of the stratospheric climate impact covers the second goal of the project.

Last but not least, the potential of stratospheric flight relies also on economic viability. Apart from potential routes, aircraft capacity and performance, development and exploitation costs… the third goal will also consider human factors, social acceptance, implementation and noise issues.

The present proposal will, contrary to regular viability studies, perform a bottom-up approach. The validity will follow a sound technical and scientific approach and shall demonstrate environmental and economic compatibility. This enables then a formulation of regulatory, technological and socio-economic barriers.

 Deliverables

List of deliverables.
IEM note on exploitation of research results, to be updated at e.o. project Documents, reports 2020-04-11 07:43:04
WP6.1 report: TRL progress, updated at M20 and M30 Documents, reports 2020-04-11 07:43:04
1st public workshop Websites, patent fillings, videos etc. 2020-04-11 07:43:05
Web site Websites, patent fillings, videos etc. 2020-04-11 07:43:05
Data Management Plan Documents, reports 2020-04-11 07:43:05

Take a look to the deliverables list in detail:  detailed list of STRATOFLY deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 Scigliano R., Marini M., Fusaro R., Viola N.
Preliminary Aero-Thermal Assessment of the High-Speed Propelled Vehicle STRATOFLY
published pages: , ISSN: , DOI:
32nd ISTS (International Symposium on Space Technology and Science) & 9th NSAT (Nano-Satellite Symposium) June 15-21, 2019 2020-04-11
2019 L. Babetto, D. Ferretto, R. Fusaro and N. Viola
MBSE methodology to support safety and reliability assessment of the thermal and Energy management subsystem of the STRATOFLY vehicle
published pages: , ISSN: , DOI:
10th IAASS Conference (International Association for the Advancements of Space Safety) 15-17 May, 2019 2020-04-11
2019 Roncioni P., Marini M., Saccone G., Fusaro R., Viola N.
Preliminary Numerical Characterization of STRATOFLY Vehicle’s Intake
published pages: , ISSN: , DOI:
International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR 2019) 30 September-3 October, 2019 2020-04-11
2019 Ali Can Ispir, Pedro Miguel Gonçalves, Bayindir H. Saracoglu
Analysis of a combined cycle propulsion system for STRATOFLY hypersonic vehicle over an extended trajectory
published pages: 3001, ISSN: 2261-236X, DOI: 10.1051/matecconf/201930403001
MATEC Web of Conferences 304 2020-04-11
2019 Viola N., Fusaro R., Vercella V., Marini M.
STRATOFLY vehicle: a test bed for integrated solid metals Heat Pipes technology
published pages: , ISSN: , DOI:
International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR 2019) 30 September-3 October, 2019 2020-04-11
2019 Scigliano R., Marini M., Roncioni P., Fusaro R., Viola N.
STRATOFLY High-Speed Propelled Vehicle Preliminary Aero-Thermal Design
published pages: , ISSN: , DOI:
International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR 2019) 30 September-3 October, 2019 2020-04-11
2019 Marini M., Hernandez S., Saracoglu B.H., Ispir A.C., Lammers K., Natale P., Cutrone L., Roncioni P., Fusaro R., Viola N.
STRATOFLY Project Challenges in the Fields of Airframe, Aerothermodynamics, High-Speed Propulsion and Energy Management System
published pages: , ISSN: , DOI:
International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR 2019) 30 September-3 October, 2019 2020-04-11
2019 Ali Can Ispir, Bayindir H. Saracoglu, Luigi Cutrone, Marco Marini
Assessment of combustion models for thermodynamic modeling of the engines for hypersonic propulsion
published pages: , ISSN: , DOI:
International Conference on Flight vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR) 30 September - 3 October 2019 2020-04-11
2019 Pedro Gonçalves, Ali Can Ispir, Zuheyr Alsalihi, Bayindir H. Saracoglu
Optimization framework coupled with Ecosimpro platform for the propulsion power plant of a hypersonic aircraft
published pages: , ISSN: , DOI:
International Conference on Flight vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR) 30 September - 3 October 2019 2020-04-11
2019 Viola N., Fusaro R., Saracoglu B.H., Schram C., Grewe V., Martinez J., Marini M., Hernandez S., Lammers K., Vincent A., Hauglustaine D., Liebhardt B., Linke F., Fureby C.
Main Challenges and goals of the H2020 STRATOFLY Project
published pages: , ISSN: , DOI:
International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering (FAR 2019) 30 September-3 October, 2019 2020-04-11
2019 Ludovico Nista, Bayindir H. Saracoglu
Development of a robust solver to model the flow inside the engines for high-speed propulsion
published pages: 3013, ISSN: 2261-236X, DOI: 10.1051/matecconf/201930403013
MATEC Web of Conferences 304 2020-04-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRATOFLY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRATOFLY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.)

CARES (2019)

City Air Remote Emission Sensing

Read More  

i-DREAMS (2019)

Safety tolerance zone calculation and interventions for driver-vehicle-environment interactions under challenging conditions

Read More  

MODALES (2019)

MOdify Drivers’ behaviour to Adapt for Lower EmissionS

Read More