Opendata, web and dolomites

PaVeS SIGNED

Parametrized Verification and Synthesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PaVeS" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET MUENCHEN 

Organization address
address: Arcisstrasse 21
city: MUENCHEN
postcode: 80333
website: www.tu-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙354˙000 €
 EC max contribution 2˙354˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme /ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 2˙354˙000.00

Mappa

 Project objective

Parameterized systems consist of an arbitrary number of replicated agents with limited computational power, interacting to achieve common goals. They pervade computer science. Classical examples include families of digital circuits, distributed algorithms for leader election or byzantine agreement, routing algorithms, and multithreaded programs. Modern examples exhibit stochastic interaction between mobile agents, and include robot swarms, molecular computers, and cooperating ant colonies.

A parameterized system is in fact an infinite collection of systems, one for each number of agents. Current verification technology of industrial strength can only check correctness of a few instances of this collection. For example, model checkers can automatically prove a distributed algorithm correct for a small number of processes, but not for any number. While substantial progress has been made on the theory and applications of parameterized verification, in order to achieve large impact the field has to face three ``grand challenges':

- Develop novel algorithms and tools for p-verification of classical p-systems that bypass the high complexity of current techniques.

-Develop the first algorithms and tools for p-verification of modern stochastic p-systems.

-Develop the first algorithms and tools for synthesis of correct-by-construction p-systems.

Addressing these challenges requires fundamentally new lines of attack. The starting point of PaVeS are two recent breakthroughs in the theory of Petri nets and Vector Addition Systems, one of them achieved by the PI and his co-authors. PaVeS will develop these lines into theory, algorithms, and tools for p-verification and p-synthesis, leading to a new generation of verifiers and synthesizers.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PAVES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PAVES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PARSe (2018)

Program Analysis and Reorganization, as a Service

Read More  

DRAIOCHT (2019)

DRAIOCHT- A low-cost minimally invasive platform medical device for the treatment of disorders of the cardiovascular system.

Read More  

HEALIGRAFT (2018)

Synergistic growth factor microenvironments for veterinary bone regeneration.

Read More