Opendata, web and dolomites

PathEVome SIGNED

Do Pathogen Extracellular Vesicles Deliver Crop Disease?

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PathEVome project word cloud

Explore the words cloud of the PathEVome project. It provides you a very rough idea of what is the project "PathEVome" about.

effectors    discovery    proteome    ev    question    final    revealed    microscopy    fusion    fungi    cytoplasmic    wp1    proteomics    suppress    dimensional    throughput    organisation    virulence    route    disease    tools    transport    cell    global    biology    corresponding    oomycetes    pathevome    evs    biological    resolve    hotly    laboratory    workpackage    innovative    endocytosis    traffic    ground    secretory    genome    roles    automated    wp2    scientific    security    vesicles    causing    accumulate    routes    immunity    pathogens    brings    diseases    host    arsenal    crop    filamentous    determined    packaged    infection    critical    significantly    secreted    reside    cells    proteins    vesicular    molecular    threaten    editing    debated    establishes    delivered    destination    pathogen    wp    electron    broadly    breaking    implicating    formed    translocated    pathology    wp3    interface    effector    vital    transgenic    living    food    breakthrough    components    biogenesis    endocytic    them    extracellular    devastating    answered    plant    inside   

Project "PathEVome" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF DUNDEE 

Organization address
address: Nethergate
city: DUNDEE
postcode: DD1 4HN
website: www.dundee.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙468˙260 €
 EC max contribution 2˙468˙260 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF DUNDEE UK (DUNDEE) coordinator 2˙130˙541.00
2    THE JAMES HUTTON INSTITUTE UK (DUNDEE) participant 337˙719.00

Map

 Project objective

Filamentous plant pathogens (fungi and oomycetes) cause the most devastating crop diseases and thus significantly threaten global food security. Essential components of their virulence arsenal are proteins called cytoplasmic effectors that are delivered inside plant cells to suppress immunity. One of the major scientific challenges in this field is understanding how effectors are secreted and translocated into host cells; a question that is hotly debated. An exciting breakthrough in my laboratory revealed that cytoplasmic effectors accumulate in extracellular vesicles (EVs), implicating this as a delivery route. This critical discovery establishes a vital need to address: • What proteins reside in EVs and how do EVs traffic them between pathogen and host cells? • How are EVs formed and how are effectors packaged into them? • What are the routes for uptake of cytoplasmic effectors into host cells and how do they reach their destination?

Each question will be answered by a corresponding workpackage (WP) that brings challenging, innovative approaches to the study of molecular plant pathology. In WP1 proteomics and transgenic approaches will allow the EV proteome to be determined and high-throughput automated electron microscopy will resolve the 3-dimensional organisation of the interface between plant and pathogen. In WP2, new molecular cell biological approaches and genome editing will facilitate an understanding of effector secretory routes and EV biogenesis. In WP3, fusion or endocytosis of EVs with plant cells will be studied and the endocytic routes to delivery of effectors to their final destination will be defined. PathEVome will develop a ground-breaking understanding of effector delivery from filamentous pathogens to the inside of living plant cells. It will provide tools and approaches beyond the current state-of-the-art in infection cell biology that can be broadly adopted to study the roles of vesicular transport in causing disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATHEVOME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATHEVOME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

AncientAdhesives (2019)

Ancient Adhesives - A window on prehistoric technological complexity

Read More