Opendata, web and dolomites


Chemical Engineering of Atomically-Flat Colloidal Quantum Wells for Next-Generation Light- Emitting Devices

Total Cost €


EC-Contrib. €






 NEXTLEDs project word cloud

Explore the words cloud of the NEXTLEDs project. It provides you a very rough idea of what is the project "NEXTLEDs" about.

significantly    carbon    revolutionized    narrowest    layer    linewidth    nanoplatelets    emitting    carefully    emission    meet    2015    display    successfully    85    changer    processable    oscillator    assembled    efficient    colloidal    synthesize    annually    exceptionally    below    leds    atomically    performance    isotropic    nextleds    epitaxially    exhibiting    nanocrystals    quantum    efficiency    19    saving    footprint    grown    npls    paradigm    auger    dramatically    showing    2006    wells    hold    integrate    solid    limited    engineering    surfaces    solutions    game    excitonic    assembly    electricity    giant    15    arisen    overarching    solution    outcoupling    colour    boost    astonishing    heterostructures    light    quality    films    strength    optoelectronic    ultra    npl    precisely    20    systematically    suppressed    diodes    generation    flat    emitters    designed    shifts    counterparts    recombination    introduction    energy    purity    demands    lighting    consumption    functional    decreased    billion    technologies   

Project "NEXTLEDs" data sheet

The following table provides information about the project.


Organization address
address: Raemistrasse 101
postcode: 8092

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 187˙419 €
 EC max contribution 187˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-02-29


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The introduction of light-emitting diodes (LEDs) offering energy-efficient solutions has revolutionized the solid-state lighting and display technologies. With the widespread use of LEDs, the electricity consumption for lighting in Europe has significantly decreased from 19% in 2006 to below 15% in 2015, enabling saving 85 billion € annually together with the dramatically reduced carbon footprint. In addition to the energy efficiency, the paradigm shifts towards to the high colour quality lighting for the next-generation lighting technologies. To meet these future demands, NEXTLEDs project aims to develop low-cost and solution-processable LEDs exhibiting ultra-high performance with exceptionally high colour purity by using colloidal quantum wells as a novel light-emitting layer. These colloidal quantum wells, also known as colloidal nanoplatelets (NPLs), have recently arisen with their astonishing excitonic features. The narrowest emission linewidth, giant oscillator strength and suppressed Auger recombination are the key features of colloidal NPLs to achieve highly functional LEDs. In addition, the controlled assembly of these atomically-flat NPLs further enhance the light outcoupling efficiency from colloidal NPL LEDs to boost their efficiency, which is theoretically limited to ~20% for any kind of isotropic emitters. To achieve our overarching goal in this project, we aim to (i) systematically synthesize advanced heterostructures of colloidal NPLs by precisely engineering their surfaces and (ii) successfully integrate the assembled NPL films into carefully designed devices to achieve highly efficient LEDs showing exceptionally high colour purity. The findings of this project together with the proposed novel heterostructures of colloidal NPLs have hold great potential to be a game changer for the development of next-generation colloidal nanocrystals based optoelectronic devices, which may even challenge their widely used epitaxially-grown counterparts.


year authors and title journal last update
List of publications.
2019 Yusuf Kelestemur, Yevhen Shynkarenko, Marco Anni, Sergii Yakunin, Maria Luisa De Giorgi, Maksym V. Kovalenko
Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence
published pages: 13899-13909, ISSN: 1936-0851, DOI: 10.1021/acsnano.9b05313
ACS Nano 13/12 2020-03-05
2019 Yemliha Altintas, Ulviyya Quliyeva, Kivanc Gungor, Onur Erdem, Yusuf Kelestemur, Evren Mutlugun, Maksym V. Kovalenko, Hilmi Volkan Demir
Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth
published pages: 1804854, ISSN: 1613-6810, DOI: 10.1002/smll.201804854
Small 15/8 2020-03-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEXTLEDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEXTLEDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)


Identification and characterization of enteric nervous system stem cells

Read More  

PopulistFP (2019)

The Populist Politics of Foreign Policy

Read More  

GenEl (2020)

General readout electronics for cross-sectoral application in European research infrastructure

Read More