Explore the words cloud of the NEXTLEDs project. It provides you a very rough idea of what is the project "NEXTLEDs" about.
The following table provides information about the project.
Coordinator |
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 187˙419 € |
EC max contribution | 187˙419 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2018 |
Duration (year-month-day) | from 2018-03-01 to 2020-02-29 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH | CH (ZUERICH) | coordinator | 187˙419.00 |
The introduction of light-emitting diodes (LEDs) offering energy-efficient solutions has revolutionized the solid-state lighting and display technologies. With the widespread use of LEDs, the electricity consumption for lighting in Europe has significantly decreased from 19% in 2006 to below 15% in 2015, enabling saving 85 billion € annually together with the dramatically reduced carbon footprint. In addition to the energy efficiency, the paradigm shifts towards to the high colour quality lighting for the next-generation lighting technologies. To meet these future demands, NEXTLEDs project aims to develop low-cost and solution-processable LEDs exhibiting ultra-high performance with exceptionally high colour purity by using colloidal quantum wells as a novel light-emitting layer. These colloidal quantum wells, also known as colloidal nanoplatelets (NPLs), have recently arisen with their astonishing excitonic features. The narrowest emission linewidth, giant oscillator strength and suppressed Auger recombination are the key features of colloidal NPLs to achieve highly functional LEDs. In addition, the controlled assembly of these atomically-flat NPLs further enhance the light outcoupling efficiency from colloidal NPL LEDs to boost their efficiency, which is theoretically limited to ~20% for any kind of isotropic emitters. To achieve our overarching goal in this project, we aim to (i) systematically synthesize advanced heterostructures of colloidal NPLs by precisely engineering their surfaces and (ii) successfully integrate the assembled NPL films into carefully designed devices to achieve highly efficient LEDs showing exceptionally high colour purity. The findings of this project together with the proposed novel heterostructures of colloidal NPLs have hold great potential to be a game changer for the development of next-generation colloidal nanocrystals based optoelectronic devices, which may even challenge their widely used epitaxially-grown counterparts.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
Yusuf Kelestemur, Yevhen Shynkarenko, Marco Anni, Sergii Yakunin, Maria Luisa De Giorgi, Maksym V. Kovalenko Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence published pages: 13899-13909, ISSN: 1936-0851, DOI: 10.1021/acsnano.9b05313 |
ACS Nano 13/12 | 2020-03-05 |
2019 |
Yemliha Altintas, Ulviyya Quliyeva, Kivanc Gungor, Onur Erdem, Yusuf Kelestemur, Evren Mutlugun, Maksym V. Kovalenko, Hilmi Volkan Demir Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth published pages: 1804854, ISSN: 1613-6810, DOI: 10.1002/smll.201804854 |
Small 15/8 | 2020-03-05 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEXTLEDS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NEXTLEDS" are provided by the European Opendata Portal: CORDIS opendata.
ARGONAUT: from the synthesis of gAnglioside tumouR antiGens to a platfOrm for caNcer Active immUnoTherapy
Read More