Opendata, web and dolomites

PairElOx

Paired Electrochemical Oxidation process for feasible industrial production of the crucial FDCA building block for the bioplastic industry

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PairElOx project word cloud

Explore the words cloud of the PairElOx project. It provides you a very rough idea of what is the project "PairElOx" about.

barrier    plant    takes    solvents    99    thinner    added    water    ghg    chemicals    oxidation    35    bio    hmf    pef    substituted    specialty    lower    oil    premium    95    biochem    packaging    owner    hazardous    energy    renewable    longer    gt    stronger    price    dangerous    fdca    1st    acid    90    minimized    conversion    variety    savings    furanoate    obtain    significantly    reductions    offers    polymer    diverse    platform    cathode    o2    electrochemical    purification    place    furandicarboxylic    wt    biomass    electrons    commercial    waste    paired    play    advantages    polyester    12    made    plastic    selectivity    oxidant    shelf    market    substitute    polyethylene    2000    66    hydroxymethylfurfural    company    pet    co2    chemical    emissions    pilot    superior    uncompleted    lab    bottles    ava    life    world    produces    usually    industrial    continuous    occurs    portfolio    bioplastic    ideal    organic    terephthalate    realized    yields    anode    purity    green   

Project "PairElOx" data sheet

The following table provides information about the project.

Coordinator
AVA BIOCHEM BSL AG 

Organization address
address: ROTHAUSSTRASSE 61
city: MUTTENZ
postcode: 4132
website: www.ava-biochem.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website http://ava-biochem.com/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.5. (SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2018-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AVA BIOCHEM BSL AG CH (MUTTENZ) coordinator 50˙000.00

Map

 Project objective

AVA Biochem is a specialty chemicals company and produces the premium platform chemical 5-Hydroxymethylfurfural (5-HMF) from renewable biomass. We are the owner of the world’s 1st industrial plant for production of 5-HMF from biomass. Recently the company has added 2,5-furandicarboxylic acid (FDCA) to its product portfolio. FDCA is considered as a top 12 Top Value-Added Chemicals, which can be used in a wide variety of applications, most significantly in the production of Polyethylene Furanoate (PEF), a polyester ideal for packaging. Most plastic bottles are made from PET (oil-based polyethylene terephthalate) but PEF is a superior polymer. It offers a better barrier for CO2 and O2, is stronger but thinner and has a longer shelf life. PEF is a bio-based substitute for oil-based PET. However, in the market, there is not an industrial commercial process to produce FDCA because of the price. After a long R&D way, we offers an HMF from biomass, which a price more than 2000% lower than currently. Diverse approaches for the oxidation of HMF to FDCA have been developed usually with uncompleted conversion. However, we have developed a continuous, integrated pilot plant for the oxidation of HMF in water with paired electrochemical oxidation to obtain FDCA and its purification. This technology has advantages since the oxidant is substituted by electrons, and the oxidation occurs at both anode and cathode, thus the produced waste and energy are minimized. Applying this concept we obtain FDCA with yields >99% in the lab and a purity of 99.95 wt%. The selectivity is >90% without any dangerous by-products. The process also takes place in water so neither hazardous organic solvents are necessary. It is considered as a green process because an energy savings of 66% and GHG emissions reductions by 35% are realized. Thus, the bio-based FDCA end-product will be offered to the market at much lower price than currently, having a crucial role to play in the PEF bioplastic packaging.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PAIRELOX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PAIRELOX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.5.;H2020-EU.2.3.1.)

DUSTCOMB (2018)

A Novel Technology to Reduce Industrial Dust Pollution and to Enable Most Efficient Energy Recovery

Read More  

EPIC (2017)

Environmentally Friendly Recycled Plastic Floors in Containers

Read More  

PAIR (2015)

Plasma active pollution control system

Read More