Opendata, web and dolomites

EvoLucin SIGNED

400 Million Years of Symbiosis: Host-microbe interactions in marine lucinid clams from past to present

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EvoLucin project word cloud

Explore the words cloud of the EvoLucin project. It provides you a very rough idea of what is the project "EvoLucin" about.

ancient    bacterial    association    diversity    tools    lifetimes    raised    evolutionary    earth    limited    symbionts    nature    infection    housed    understand    found    experimentally    microbial    symbiosis    communication    organ    history    clams    innate    virtually    intracellular    cells    cutting    maintenance    lucinidae    host    fundamentally    species    microbes    lived    health    bacteria    exchange    immense    alter    free    distant    oceans    molecular    families    evolution    unmatched    biology    environment    function    infected    discovering    experimental    million    mechanisms    considering    combine    proteins    perpetuation    transforming    assumptions    specificity    overarching    recognition    insights    immune    400    trillions    drive    hypothesize    few    basis    select    staggering    gill    exclusive    animals    lab    symbiotic    emergence    underlying    parts    lucinid    encoded    interaction    interactions    marine    juveniles    clam    symbiont    animal    acquisition    ideal    microbe    edge    chemosynthetic    outstanding    location   

Project "EvoLucin" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT WIEN 

Organization address
address: UNIVERSITATSRING 1
city: WIEN
postcode: 1010
website: www.univie.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 1˙499˙561 €
 EC max contribution 1˙499˙561 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT WIEN AT (WIEN) coordinator 1˙499˙561.00

Map

 Project objective

The widespread recognition that interactions with microbes drive animal health, development and evolution is transforming biology, but we so far understand the underlying mechanisms in very few systems. Considering that virtually every animal on Earth evolved with and among the microbes in its environment, there is still immense potential for discovering fundamentally new mechanisms of interaction among the staggering diversity of animals and their microbial symbionts in nature. The ancient and exclusive association between marine lucinid clams and chemosynthetic symbiotic bacteria is ideal for investigating these interactions. Lucinidae is one of the most widespread and species-rich animal families in the oceans today, and has lived in symbiosis for more than 400 million years. The clam’s outstanding ability to select one specific symbiont from the trillions of bacteria in its environment challenges widely held assumptions about the function and specificity of the innate immune system. Symbiont-free juveniles can be raised in the lab, and experimentally infected, allowing unmatched insights into the early development of this symbiosis. Although the symbiont infection is specific to gill cells, symbiont-encoded proteins can be found in distant parts of the animal that are symbiont-free. I will combine cutting-edge molecular tools and experimental infection to better understand three key aspects of host-microbe interactions in these clams: 1) Acquisition and selection of microbes during animal development, 2) Maintenance along animal lifetimes through molecular communication and exchange, and 3) Emergence and perpetuation over evolution. I hypothesize that intracellular bacterial symbionts fundamentally alter host biology, and these effects are not limited to the location where symbionts are housed, but can affect distant organ systems. My overarching goal is to understand the molecular basis for these effects, and their evolutionary history.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EVOLUCIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EVOLUCIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More