Opendata, web and dolomites

SynECS SIGNED

Combining carbon nanotubes and gold nanorods to investigate the extracellular space around synapses during neuronal communication

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SynECS" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 185˙076.00

Map

 Project objective

The extracellular space (ECS) is a complex network of biomolecules that constitutes a key microenvironment for cellular communication, homeostasis, and clearance of toxic metabolites. In the brain, signalling molecules, neuromodulators, and nutrients transit via the ECS, therefore mediating the communication between cells. To date, understanding the role of the ECS in modulating neuronal communication represents a knowledge frontier in brain research. This limit has conceptual and methodological roots: the complex 3-D dynamical organization of the ECS and the current lack of dedicated relevant investigation tools. The aim of this project is to combine several innovative nanotechnological approaches to reveal the morphological and rheological properties of the brain extracellular space around synapses during neuronal communication processes. To decrypt the intimate interplay between ECS and synapses in neuronal communication, this Action proposes to use innovative optical nanoimaging and nanostimulation methodologies based on nano-probes (single-wall carbon nanotubes, SWCNTs, and gold nanorods, Au NRs). Au NRs will be used to stimulate individual neurons in hippocampal cultured organotypic slices, while SWCNTs will image and unveil the rheological characteristics of the ECS around synapses. The outcomes of this project will bring us a step closer to fully understand chemical-based neural communication and synaptic connectivity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNECS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNECS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

LEANOR (2019)

Detecting Low-Energy Astrophysical Neutrinos with KM3NeT/ORCA: the Transient Neutrino Sky at the GeV Scale

Read More  

Self-EsteemProcesses (2020)

A self-esteem process framework of the transition to work

Read More