Opendata, web and dolomites

ImmunoBioSynth SIGNED

Synergistic engineering of anti-tumor immunity by synthetic biomaterials

Total Cost €


EC-Contrib. €






Project "ImmunoBioSynth" data sheet

The following table provides information about the project.


Organization address
city: GENT
postcode: 9000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2024-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT GENT BE (GENT) coordinator 2˙000˙000.00


 Project objective

Immunotherapy holds the potential to dramatically improve the curative prognosis of cancer patients. However, despite significant progress, a huge gap remains to be bridged to gain board success in the clinic. A first limiting factor in cancer immunotherapy is the low response rate in large fraction of the patients and an unmet need exists for more efficient - potentially synergistic - immunotherapies that improve upon or complement existing strategies. The second limiting factor is immune-related toxicity that can cause live-threatening situations as well as seriously impair the quality of life of patients. Therefore, there is an urgent need for safer immunotherapies that allow for a more target-specific engineering of the immune system. Strategies to engineer the immune system via a materials chemistry approach, i.e. immuno-engineering, have gathered major attention over the past decade and could complement or replace biologicals, and holds promise to contribute to resolving the current issues faced by the immunotherapy field. I hypothesize that synthetic biomaterials can play an important role in anti-cancer immunotherapy with regard to synergistic, safe, but potent, instruction of innate and adaptive anti-cancer immunity and to revert the tumor microenvironment from an immune-suppressive into an immune-susceptible state. Hereto, the overall scientific objective of this proposal is to fully embrace the potential of immuno-engineering and develop several highly synergistic biomaterials strategies to engineer the immune system to fight cancer. I will develop a series of biomaterials and address a number of fundamental questions with regard to optimal biomaterial design for immuno-engineering. Based on these findings, I will elucidate those therapeutic strategies that lead to synergistic engineering of innate and adaptive immunity in combination with remodeling the tumor microenvironment from an immune-suppressive into an immune-susceptible state.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMMUNOBIOSYNTH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IMMUNOBIOSYNTH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More