Opendata, web and dolomites

FeMiT SIGNED

Ferrites-by-design for Millimeter-wave and Terahertz Technologies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FeMiT" data sheet

The following table provides information about the project.

Coordinator
AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS 

Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006
website: http://www.csic.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 1˙989˙967 €
 EC max contribution 1˙989˙967 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) coordinator 1˙989˙967.00

Map

 Project objective

Robust disruptive materials will be essential for the “wireless everywhere” to become a reality. This is because we need a paradigm shift in mobile communications to meet the challenges of such an ambitious evolution. In particular, some of these emerging technologies will trigger the replacement of the magnetic microwave ferrites in use today. This will namely occur with the forecasted shift to high frequency mm-wave and THz bands and in novel antennas that can simultaneously transmit and receive data on the same frequency. In both cases, operating with state-of-the-art ferrites would require large external magnetic fields incompatible with future needs of smaller, power-efficient devices. To overcome these issues, we target ferrites featuring the so far unmet combinations of low magnetic loss and large values of magnetocrystalline anisotropy, magnetostriction or magnetoelectric coupling. The objective of FeMiT is developing a novel family of orthorhombic ferrites based on ε-Fe2O3, a room-temperature multiferroic with large magnetocrystalline anisotropy. Those properties and unique structural features make it an excellent platform to develop the sought-after functional materials for future compact and energy-efficient wireless devices. In the first part of FeMiT we will explore the limits and diversity of this new family by exploiting rational chemical substitutions, high pressures and strain engineering. Soft chemistry and physical deposition methods will be both considered at this stage. The second part of FeMiT entails a characterization of functional properties and selection of the best candidates to be integrated in composite and epitaxial films suitable for application. The expected outcomes will provide proof-of-concept self-biased or voltage-controlled signal-processing devices with low losses in the mm-wave to THz bands, with high potential impact in the development of future wireless technologies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FEMIT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FEMIT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Life-Inspired (2019)

Life-inspired complex molecular systems controlled by enzymatic reaction networks

Read More  

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More  

NeuroMag (2019)

The Neurological Basis of the Magnetic Sense

Read More  
lastchecktime (2021-05-07 16:17:26) correctly updated