Opendata, web and dolomites

PATRES-MDS SIGNED

Pathogenesis and treatment of splicing factor mutant myelodysplastic syndromes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PATRES-MDS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙999˙771 €
 EC max contribution 1˙999˙771 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙999˙771.00

Map

 Project objective

The myelodysplastic syndromes (MDS) are a heterogeneous group of malignancies of the haematopoietic stem cell (HSC) with a tendency for leukaemic transformation. Despite some new therapies, the MDS are lethal to most sufferers and in need of new effective treatments. Splicing factor gene mutations are the commonest class of somatic alterations in MDS and primarily affect the genes SF3B1, SRSF2, U2AF1 and ZRSR2. The mutations are associated with altered mRNA splicing, but each affects different transcripts and it is unclear how they drive MDS. It has been hypothesised that different mutations share pathogenetic mechanisms, distinct from their effects on alternative splicing. Recently, augmented R-Loop formation leading to cell cycle arrest of haematopoietic progenitors was identified as one such mechanism. However, we have no understanding of how the mutations drive clonal HSC expansion, a critical node for the development of new treatments. To this end, we and others described the phenomenon of clonal haematopoiesis (CH), widely held as the precursor of MDS and other myeloid cancers. We observed CH driven by splicing gene mutations only in individuals aged ≥ 70-years-old. This and other observations point to an interaction between ageing and the ability of splice factor mutations to drive clonal expansion. Here, I propose to investigate the two most common variants in MDS, SF3B1-K700E and SRSF2-P95H. Research Plan 1. Characterise the global impact of the mutations using state-of-the-art transcriptomics and proteomics 2. Use bone marrow samples from elderly humans to study the interaction of ageing with splicing factor mutations 3. Generate mosaic mutant mice to investigate the impact of ageing and other perturbations on SF3B1-K700E and SRSF2-P95H haematopoiesis

Findings will be validated and pursued mechanistically to derive new insights into the molecular mechanisms and interaction of the mutations with ageing, whilst also identifying new candidate therapies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATRES-MDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATRES-MDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More