Opendata, web and dolomites

Visual Proteomics SIGNED

Biomarker discovery by AI-guided, image based single-cell isolation proteomics

Total Cost €


EC-Contrib. €






 Visual Proteomics project word cloud

Explore the words cloud of the Visual Proteomics project. It provides you a very rough idea of what is the project "Visual Proteomics" about.

microdissection    cellular    laboratory    populations    outside    edge    perform    retrospective    diagnosis    impede    complement    severe    detection    clinical    shown    map    machine    career    acquisition    followed    intelligence    ground    expression    outcome    patient    critical    malignancies    critically    individual    me    unresolved    therapies    disease    cancer    morphology    proteome    class    solid    correlate    resolution    collaborative    techniques    descriptions    identity    world    discoveries    artificial    limited    laser    learning    candidates    biomarker    molecular    guided    samples    workflow    array    personalized    biomarkers    optimize    tissues    tissue    composition    prospective    pipeline    niche    attempt    tumor    form    microscopic    cutting    fertile    treatment    prediction    pathology    receive    microscopy    automated    competitive    averaged    image    inspire    ubiquitous    exploits    cell    archival    ffpe    profiling    protein    early    proteomics    diseases    isolated    host    heterogeneity    survival    individually    proteins    cells    sensitivity    stimulate    expertise    unprecedented    biobank    training   

Project "Visual Proteomics" data sheet

The following table provides information about the project.


Organization address
address: NORREGADE 10
postcode: 1165

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 207˙312 €
 EC max contribution 207˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 207˙312.00


 Project objective

Early detection of severe malignancies such as cancer is the most effective way to increase patient survival, but early diagnosis and prediction of treatment outcome critically depend on disease-specific biomarkers. However, molecular and cellular disease heterogeneity provide a ubiquitous and unresolved challenge to this important task, and therefore impede any attempt to develop personalized therapies. Past and current approaches provide “averaged” descriptions of the tumor composition and have shown very limited success to identify biomarkers. This is likely due to the failure of these methods to identify the critical disease promoting cell populations within the tumor. Therefore, I will develop a new workflow that exploits automated microscopic image acquisition and artificial-intelligence-guided image analysis to identify specific cell populations in patient samples. These cells are then individually isolated by laser microdissection, followed by high-sensitivity proteome profiling, to identify proteins that define the identity of individual cells in a given tumor and thus represent the most promising biomarker candidates. To apply my approach to wide array of diseases, I will optimize it for archival biobank tissues (FFPE), the most common form of solid tissues in pathology. Applied to FFPE samples, my approach will allow me to perform both prospective and retrospective studies, correlate disease state and tissue morphology to protein expression and clinical outcome, and map tumor heterogeneity with unprecedented resolution. To achieve this, I will receive world-class training in cutting-edge microscopy and machine learning techniques in my host laboratory, which I complement with my expertise in high-sensitivity proteomics. My new pipeline will offer a highly fertile ground for new biomarker discoveries, inspire and stimulate collaborative research within and outside the host institute and allow me to establish a highly competitive niche for my future career.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VISUAL PROTEOMICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VISUAL PROTEOMICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

lanloss (2020)

Landscapes of Loss: Mapping the Affective Experience of Deforestation Among Diverse Social Groups in the South American Chaco

Read More  

EuroDipl (2020)

European Diplomacy Practices post-Lisbon: Adding Value through Cooperation

Read More  

PROTEAN (2019)

Prospective Environmental Assessment of Urban Agriculture Emerging-Systems

Read More