Opendata, web and dolomites

Visual Proteomics SIGNED

Biomarker discovery by AI-guided, image based single-cell isolation proteomics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Visual Proteomics project word cloud

Explore the words cloud of the Visual Proteomics project. It provides you a very rough idea of what is the project "Visual Proteomics" about.

prediction    candidates    heterogeneity    intelligence    competitive    inspire    training    unresolved    therapies    proteome    disease    tissue    world    artificial    exploits    host    laboratory    outside    correlate    outcome    image    learning    impede    survival    array    expression    receive    biomarkers    ground    individually    stimulate    shown    archival    sensitivity    composition    expertise    pathology    descriptions    identity    profiling    prospective    niche    perform    automated    critical    populations    edge    ubiquitous    form    cancer    guided    microscopy    microscopic    isolated    averaged    me    tissues    critically    proteomics    molecular    collaborative    limited    laser    cell    cellular    morphology    machine    samples    patient    biomarker    cells    optimize    tumor    resolution    solid    protein    class    cutting    proteins    complement    followed    diseases    diagnosis    ffpe    individual    clinical    attempt    retrospective    malignancies    workflow    career    severe    discoveries    pipeline    early    techniques    biobank    acquisition    microdissection    unprecedented    personalized    detection    fertile    treatment    map   

Project "Visual Proteomics" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 207˙312 €
 EC max contribution 207˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 207˙312.00

Map

 Project objective

Early detection of severe malignancies such as cancer is the most effective way to increase patient survival, but early diagnosis and prediction of treatment outcome critically depend on disease-specific biomarkers. However, molecular and cellular disease heterogeneity provide a ubiquitous and unresolved challenge to this important task, and therefore impede any attempt to develop personalized therapies. Past and current approaches provide “averaged” descriptions of the tumor composition and have shown very limited success to identify biomarkers. This is likely due to the failure of these methods to identify the critical disease promoting cell populations within the tumor. Therefore, I will develop a new workflow that exploits automated microscopic image acquisition and artificial-intelligence-guided image analysis to identify specific cell populations in patient samples. These cells are then individually isolated by laser microdissection, followed by high-sensitivity proteome profiling, to identify proteins that define the identity of individual cells in a given tumor and thus represent the most promising biomarker candidates. To apply my approach to wide array of diseases, I will optimize it for archival biobank tissues (FFPE), the most common form of solid tissues in pathology. Applied to FFPE samples, my approach will allow me to perform both prospective and retrospective studies, correlate disease state and tissue morphology to protein expression and clinical outcome, and map tumor heterogeneity with unprecedented resolution. To achieve this, I will receive world-class training in cutting-edge microscopy and machine learning techniques in my host laboratory, which I complement with my expertise in high-sensitivity proteomics. My new pipeline will offer a highly fertile ground for new biomarker discoveries, inspire and stimulate collaborative research within and outside the host institute and allow me to establish a highly competitive niche for my future career.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VISUAL PROTEOMICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VISUAL PROTEOMICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More