Opendata, web and dolomites


Majorana Networks

Total Cost €


EC-Contrib. €






Project "MaNET" data sheet

The following table provides information about the project.


Organization address
address: NORREGADE 10
postcode: 1165

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2017-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 200˙194.00


 Project objective

The aim of the proposed research project is to establish a new environment for the generation, study and manipulation of Majorana fermions, namely two dimensional electron gases embedded in III-V semiconductors with strong spin-orbit interaction. With respect to the nowadays approach, based on nanowires, two-dimensional materials will allow completely new sample design, paving the way for precise control and complex manipulation of Majorana modes. The ultimate goal will be the realization of multi-terminal networks, where the braiding statistics of Majorana fermions will be investigated. The success of the proposed project will constitute a key advancement for the use of Majorana fermions as tools for quantum computing applications. We will make use of recently developed tools and materials to solve the nowadays technical difficulties in taking experiments on Majorana fermions to a new level. For our research, we will adopt InAsInGaAs quantum wells, characterized by strong spin-orbit interaction and large Landé g-factor, coupled to superconducting electrodes. As shown by preliminary results, the quality of our InAs samples is unique in terms of mobility and gate stability. The researcher’s expertise in quantum transport is a good match to the wide experience of the host institution in terms of quantum computation and semiconductor/superconductor hybrid devices. The availability of the state of the art cryogenic equipment, including vector magnets, will allow to experimentally explore completely new regimes in condensed matter physics.


year authors and title journal last update
List of publications.
2017 A. C. C. Drachmann, H. J. Suominen, M. Kjaergaard, B. Shojaei, C. J. Palmstrøm, C. M. Marcus, F. Nichele
Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum
published pages: 1200-1203, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.6b04964
Nano Letters 17/2 2019-07-24
2016 Asbjørn Rasmussen, Jeroen Danon, Henri Suominen, Fabrizio Nichele, Morten Kjaergaard, Karsten Flensberg
Effects of spin-orbit coupling and spatial symmetries on the Josephson current in SNS junctions
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.93.155406
Physical Review B 93/15 2019-07-24
2016 J. Shabani, M. Kjaergaard, H. J. Suominen, Younghyun Kim, F. Nichele, K. Pakrouski, T. Stankevic, R. M. Lutchyn, P. Krogstrup, R. Feidenhans\'l, S. Kraemer, C. Nayak, M. Troyer, C. M. Marcus, C. J. Palmstrøm
Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.93.155402
Physical Review B 93/15 2019-07-24
2017 H. J. Suominen, J. Danon, M. Kjaergaard, K. Flensberg, J. Shabani, C. J. Palmstrøm, F. Nichele, C. M. Marcus
Anomalous Fraunhofer interference in epitaxial superconductor-semiconductor Josephson junctions
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.95.035307
Physical Review B 95/3 2019-07-24
2016 M. Kjaergaard, F. Nichele, H. J. Suominen, M. P. Nowak, M. Wimmer, A. R. Akhmerov, J. A. Folk, K. Flensberg, J. Shabani, C. J. Palmstrøm, C. M. Marcus
Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure
published pages: 12841, ISSN: 2041-1723, DOI: 10.1038/ncomms12841
Nature Communications 7 2019-07-24
2017 M. Kjaergaard, H. J. Suominen, M. P. Nowak, A. R. Akhmerov, J. Shabani, C. J. Palmstrøm, F. Nichele, C. M. Marcus
Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction
published pages: , ISSN: 2331-7019, DOI: 10.1103/PhysRevApplied.7.034029
Physical Review Applied 7/3 2019-07-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MANET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MANET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

distalC-Hfun (2020)

Transient directing group for catalytic distal C–H functionalisation

Read More  

CSI AurkA-MYC (2019)

Conformational Shift Inducers (CSI): An atomistic level investigation of Aurora kinase A (AurkA)–MYC interaction and its distortion by CSI compounds

Read More  

WeCanIt (2020)

We Can Do It! Women’s labour market participation in the maritime sector in the Upper Adriatic after the two World Wars in an intersectional perspective

Read More