Opendata, web and dolomites

SYNKIT SIGNED

Synthetic Natural Killer Cells for Immunotherapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SYNKIT project word cloud

Explore the words cloud of the SYNKIT project. It provides you a very rough idea of what is the project "SYNKIT" about.

combat    introduction    therapies    shelf    poor    limited    urging    impaired    killer    death    successful    bottlenecks    insights    genetic    host    reduce    capacity    thereby    tailor    transfer    lack    education    synkit    antigen    functional    deletion    tumour    complete    cells    absence    cell    strategy    pave    ipscs    persistence    nk    treatment    rejection    differentiation    natural    diminishing    immunotherapy    worldwide    deficient    innovative    prevent    disarming    possess    mechanism    self    efficacy    infusion    immune    modulates    anti    setting    function    ligands    option    broad    molecular    recognition    cancer    leukocyte    off    platform    tumours    ing    engineering    underlying    human    expand    engineered    limitations    transferred    pluripotent    vitro    allogenicity    recipient    missing    modulate    attractive    intrinsic    ink    escape    hla    ipsc    allogeneic    completion    synthetic    generation    unravelled    eliminate    triggers    laboratory    stem   

Project "SYNKIT" data sheet

The following table provides information about the project.

Coordinator
KAROLINSKA INSTITUTET 

Organization address
address: Nobels Vag 5
city: STOCKHOLM
postcode: 17177
website: www.ki.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 191˙852 €
 EC max contribution 191˙852 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-07-01   to  2022-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KAROLINSKA INSTITUTET SE (STOCKHOLM) coordinator 191˙852.00

Map

 Project objective

'Cancer remains a leading cause of death worldwide, urging for innovative therapies. Infusion of natural killer (NK) cells, which possess an intrinsic capacity to eliminate cancer cells, is a promising treatment option for various tumours. Genetic engineering of NK cells before transfer allows to specifically tailor and modulate their anti-tumour responses. One particularly attractive strategy for broad implementation of NK cell immunotherapy in an “off-the-shelf” setting is to expand large numbers of NK cells from induced pluripotent stem cells (iPSCs). However, this approach is limited by two main bottlenecks: i) poor persistence of allogeneic iPSC-derived NK (iNK) cells due to rejection by the recipient immune system and ii) impaired functionality due to failure to achieve complete differentiation in vitro. The SYNKIT project seeks to address both of these current limitations through genetic engineering of iNK cells for increased persistence and function. Deletion of human leukocyte antigen (HLA) 'self-ligands' allows the transferred cells to escape from host T cells. However, absence of HLA also triggers “missing-self” recognition and rejection by host NK cells. In addition, new insights from the host laboratory into the molecular mechanism underlying NK cell education have unravelled a pathway of functional disarming in NK cells that lack self-ligands, further diminishing the anti-tumour efficacy of HLA-deficient NK cells. In SYNKIT, I will use HLA-deficient iNK cells as a platform to assess how introduction of synthetic self-ligands modulates the allogenicity and functionality of iNK cells. The overall goal of SYNKIT is to identify synthetic self-ligands, which reduce recognition by the host immune system and yet prevent functional disarming of the engineered iNK cells, thereby resulting in optimised anti-tumour function. Successful completion of SYNKIT will pave the way for development of next generation immunotherapy to more effectively combat cancer. '

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNKIT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNKIT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More