Opendata, web and dolomites

PreNeolithicMalaria SIGNED

Evolutionary history of the sickle cell trait among Central African hunter-gatherers and farmers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PreNeolithicMalaria" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS 

Organization address
address: NORTH STREET 66 COLLEGE GATE
city: ST ANDREWS
postcode: KY16 9AJ
website: www.st-andrews.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS UK (ST ANDREWS) coordinator 224˙933.00

Map

 Project objective

Tertian malignant malaria (or malaria for short) currently kills more than 400k people per year in sub-Saharan Africa. Malaria probably became endemic in that region during the Neolithic transition, due to the spread of agriculture, thus imposing a strong selective pressure on the human genome. As a consequence, sickle cell anemia, a genetic disease that protects against malaria, is thought to have been selected and maintained at high frequencies among sub-Saharan farmers (Bantus) by balancing selection since the Neolithic. However, recent observations provide grounds for challenging this predominant view. Indeed, the high incidence of the sickle cell trait in sub-Saharan hunter-gatherers (Pygmies) and a pre-Neolithic origin of the human malaria parasite suggest that malaria infections affected humans much earlier than the Neolithic. Using genetic data from a cohort of Bantu and Pygmy populations, I will here test the alternative hypothesis that the sickle cell trait was selected and spread among African hunter-gatherers before the Neolithic. If proved correct, this hypothesis would indicate that human genomic resistance to parasitemias exacerbated by the spread of agriculture could have facilitated the Neolithic transition, rather than being its consequence. This new knowledge would allow us to re-evaluate the long-term role played by genetic adaptation to malaria in human evolution and to put into a new perspective a classical case study of gene-culture co-evolution.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PRENEOLITHICMALARIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PRENEOLITHICMALARIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GainGrain (2019)

Understanding genetic hubs in rice inflorescence architecture to increase grain yield

Read More  

INSPIRATION (2019)

Investigation of the SNP-induced RNA structure variations between subgenomes in polyploid wheat

Read More  

X-MIXING (2019)

Efficient mixing method at the microscale for Time-Resolved Serial Femtosecond Crystallography

Read More