Opendata, web and dolomites

Desiccation Survival SIGNED

Discovery of intrinsically disordered sequences conferring desiccation survival

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Desiccation Survival project word cloud

Explore the words cloud of the Desiccation Survival project. It provides you a very rough idea of what is the project "Desiccation Survival" about.

intrinsically    idp    validate    extremely    screen    discover    vivo    undergo    animals    tested    hits    protect    fundamental    library    survive    biomaterials    cell    aggregation    protective    determinants    throughput    designing    phylum    functional    abundant    shown    survival    form    functions    death    dryness    desiccation    computational    ing    glass    transition    disordered    question    space    cahs    materials    protein    gelation    generate    idps    sequences    questions    micro    mediated    unfolding    proteins    screening    periods    irreversibly    learned    sampling    vitro    intracellular    unfold    solids    biology    learning    stress    protection    unravel    dry    sequence    extract    machine    confer    engineering    rescue    cells    perform    paradigm    organisms    soluble    unknown    vitrified    function    underlying    tardigrades    cytosolic    aggregate    assay    rationally    aid    family    heat    algorithms    pipeline   

Project "Desiccation Survival" data sheet

The following table provides information about the project.

Coordinator
UNITED KINGDOM RESEARCH AND INNOVATION 

Organization address
address: POLARIS HOUSE NORTH STAR AVENUE
city: SWINDON
postcode: SN2 1FL
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNITED KINGDOM RESEARCH AND INNOVATION UK (SWINDON) coordinator 212˙933.00

Map

 Project objective

Desiccation is a form of stress wherein extremely dry conditions cause intracellular proteins to unfold and aggregate irreversibly, resulting in cell-death. How do cells and organisms survive desiccation is a fundamental question in biology. Cytosolic Abundant Heat Soluble (CAHS) proteins, a family of intrinsically disordered proteins (IDPs) in tardigrades (a phylum of micro-animals), have been shown to be important for their survival during long periods of dryness. Under desiccation condition, CAHS proteins undergo glass-transition and gelation to form vitrified solids that protect intracellular proteins from unfolding and aggregation. However, the features of CAHS proteins that confer protection are unknown. Here, I aim to unravel the sequence determinants of CAHS protein functions, by addressing 3 specific questions:

Aim 1: What are the sequence features that promote glass-transition and gelation in CAHS proteins? Aim 2: Can we discover new sequences that can rescue cells from desiccation? Aim 3: What is the sequence-to-function paradigm underlying IDP-mediated desiccation survival?

I will (i) perform computational analysis of existing CAHS proteins to extract their sequence features to design a library for adequate sampling of the sequence space; (ii) screen the library with a high-throughput survival-based assay and validate the hits both in vitro and in vivo; (iii) analyse the results with machine learning algorithms to generate characteristic sequence features underlying protective glass-transition. The learned features will be tested by rationally designing and screening a new sequence library for desiccation survival. This project will provide fundamental sequence-level understanding of how IDPs promote stress response, specifically via glass-transition during desiccation. Moreover, the materials and pipeline generated and the findings of this study will aid in engineering functional biomaterials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DESICCATION SURVIVAL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DESICCATION SURVIVAL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

CP-FTmmW Aminogen (2020)

Chemistry and structure of aminogen radicals using chirped-pulse Fourier transform (sub)millimeter rotational spectroscopy

Read More