Opendata, web and dolomites


Understanding the material structure-activity correlation in plasma catalytic CO2 conversion

Total Cost €


EC-Contrib. €






Project "PLASMACAT" data sheet

The following table provides information about the project.


Organization address
address: PRINSSTRAAT 13
postcode: 2000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 178˙320 €
 EC max contribution 178˙320 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT ANTWERPEN BE (ANTWERPEN) coordinator 178˙320.00


 Project objective

Plasma catalysis is a new emerging field of conversion technology, particularly focused on converting relatively stable gases such as CO2 to basic chemical building blocks by using electrical energy. It consist of highly energetic accelerated electrons producing a cocktail of activated species such as ions, radicals and excited species. To be able to enhance its energy efficiency and create selective conversions, packing materials and catalysts are being introduced in the plasma. Although it is well accepted that there is a mutual interaction of the materials on the plasma properties and vice versa, the underlying mechanisms and even more the specific material properties influencing plasma conversion, selectivity and energy efficiency are still largely unknown. Therefore, a systematic study applying know-how of the applicant and supervisor in controlled material synthesis will be integrated in plasma catalytic studies, a new field of research for the applicant. This will permit a systematic structure-activity correlation, identifying the impact of yet unrevealed material properties on the plasma characteristics and performance (conversion, selectivity and energy efficiency) determined by the specific plasma environment. Focus will be put on studying the impact of metal dispersion and metal support interactions on the plasma characteristics, plasma catalytic conversion and selectivity as well as its stability. Elucidating the role of packing geometry on plasma catalysis is a particular aspect of this MSCA, which is expected to have unique behavior in plasma discharge and characteristics and hence conversion and selectivity. This is a feature distinctive for plasma and not encountered in classical catalytic processes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLASMACAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLASMACAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  


Emergency Decision Support System of Offshore Platform Fires

Read More  

QuanToPol (2020)

Quantum Topological Polaritonics

Read More