Opendata, web and dolomites

MERIR SIGNED

Methane related iron reduction processes in sediments: Hidden couplings and their significance for carbon and iron cycles

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MERIR project word cloud

Explore the words cloud of the MERIR project. It provides you a very rough idea of what is the project "MERIR" about.

profiles    coupled    merir    mineral    natural    observations    elucidate    methane    reveal    aom    annual    breakthroughs    reactivities    methanogenesis    anthropogenic    magnetite    redox    impacts    understandings    emissions    did    fortunately    fe    precipitation    couplings    actually    intensive    survival    originate    anaerobic    reactivity    strategies    nonanthropogenic    cycles    release    aerobic    global    players    magnetism    poorly    microbial    decreases    active    depths    iron    accompanied    toward    scavengers    authigenic    mineralogy    near    mechanisms    dwarfing    unexplored    limit    about    levels    interdisciplinary    deep    magnitude    methanogenic    striking    environmental    aquatic    phenomena    involvement    methanotrophs    minerals    co2    unusual    sedimentary    sediments    perspectives    ch4    oxidation    unexplained    biogeochemical    sources    zone    oxide    expertise    concentrations    atmosphere    carbon    sulfate    sink    resolve    below    me    naturally   

Project "MERIR" data sheet

The following table provides information about the project.

Coordinator
BEN-GURION UNIVERSITY OF THE NEGEV 

Organization address
address: .
city: BEER SHEVA
postcode: 84105
website: www.bgu.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2024-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BEN-GURION UNIVERSITY OF THE NEGEV IL (BEER SHEVA) coordinator 2˙000˙000.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

About one-third of annual methane (CH4) emissions to the atmosphere originate from natural, nonanthropogenic sources. However, if all the naturally produced methane actually did reach the atmosphere, its levels would increase by an order of magnitude, dwarfing anthropogenic CO2 emissions. Fortunately, natural scavengers of this methane near its production zone limit its release. One of these scavengers, iron (Fe) oxide, can become a major sink for methane when sulfate concentrations are low. Methane-iron couplings in established sediments, however, are poorly understood. Specifically, significant iron oxide reduction has been observed in many aquatic sediments at depths well below its expected redox zone, where methane is produced by methanogenesis, often accompanied by decreases in methane concentrations. These observations challenge our understandings of iron-methane couplings and microbial players in the deep methanogenic zone and their impacts on the carbon, iron and other cycles. I aim in the proposed research to elucidate the unexplored mechanisms of methane-related iron reduction (MERIR) in the methanogenic zone of established sedimentary profiles under various environmental conditions and their impact on global biogeochemical cycles. I will resolve two striking yet unexplained phenomena: (1) the active involvement of aerobic methanotrophs in iron-coupled anaerobic oxidation of methane (AOM), and (2) the unusual reactivity of iron minerals toward reduction that is accompanied by intensive authigenic magnetite precipitation, and the effects of this mineralogy change on sedimentary magnetism. My expertise will enable me to achieve the objectives of this interdisciplinary proposed work using novel approaches from different fields. The project will likely lead to breakthroughs in our understanding of microbial survival strategies, reveal novel pathways for aerobic methanotrophs, and change our perspectives on iron mineral reactivities and sedimentary magnetism.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MERIR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MERIR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

HydroLieve (2018)

A long-lasting non-migrating hydrogel for relieving chronic pain

Read More