Opendata, web and dolomites

REPLAY SIGNED

The Function of Hippocampal and Cortical Memory Replay in Humans

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "REPLAY" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙416˙506 €
 EC max contribution 1˙416˙506 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 1˙403˙121.00
2    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) participant 13˙385.00

Map

 Project objective

How does the brain use past experiences to shape future actions? Over two decades ago, research in rodents has made a remarkable discovery that may provide key answers to this fundamental question. Researchers found that while rats were sleeping, activity in their hippocampus seemingly retraced the animals’ previous trajectories in a maze, only much faster than in real time. This phenomenon, known as replay, has become a major focus of neuroscientists and even artificial intelligence researchers over the past decades. The resulting research demonstrated that replay is prevalent during wakeful resting, related to memory, planning and reward processing, and shares similarities with machine learning algorithms. These findings suggest that replay may be a fundamental mechanism behind memory consolidation and the computation of optimal behavior. Yet, despite the significance of this phenomenon, little is known about replay in the human brain. The major reason for the lack of knowledge are difficulties to measure fast neural processes non-invasively in the human hippocampus. The main goal of the proposed research is to overcome these obstacles, and to provide deeper insights into replay in humans. To achieve this, we will use a novel fMRI analysis method that tests whether the transitions between successive fMRI patterns during rest or sleep exhibit non-random relations to the temporal structure of previous experiences. Using this approach, the proposed research will provide insights into four cognitive and computational aspects of replay in the human brain: (1) the coordination of hippocampal replay with activity in other brain areas, (2) the effects of reward and planning on content and direction of replay, (3) the role of replay during sleep and its relation to sleep spindles, and (4) its role in age-related memory decline. In combination, insights gained from this research promise to greatly enhance our understanding of how memories guide adaptive behavior in humans.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REPLAY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REPLAY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ChaperoneRegulome (2020)

ChaperoneRegulome: Understanding cell-type-specificity of chaperone regulation

Read More  

PODCAST (2020)

Predictions and Observations for Discs: Planetary Cores and dust Aggregates from non-ideal MHD Simulations with radiative Transfer.

Read More  

U-HEART (2018)

Unbreakable HEART: a reconfigurable and self-healing isolated dc/dc converter (U-HEART)

Read More