Opendata, web and dolomites

4lessCH4 SIGNED

Rational Design of Ceria-Supported Non-Noble Metal Nanoalloys as Catalysts for the Selective Direct Conversion of Methane to Methanol

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 4lessCH4 project word cloud

Explore the words cloud of the 4lessCH4 project. It provides you a very rough idea of what is the project "4lessCH4" about.

disentagle    nanoalloys    metallic    first    water    nano    ones    oxidic    experiment    employing    dmtm    suppressing    perhaps    strategy    rational    manmade    co2    holy    power    mechanism    emissions    temperature    grail    sought    hydrogen    basic    avoiding    data    potent    consists    model    close    mitigating    feedstock    selectivity    screening    optimization    natural    route    ch4    obtain    reformed    direct    theory    powder    catalysts    vehicles    too    expensive    computational    bond    size    efficient    oxygen    powders    reactants    molecular    atomic    structured    principles    activate    calculations    reducible    complete    methanol    methane    converting    alloying    performed    noble    ch3oh    oxide    chemicals    reaction    methodology    behavior    greenhouse    nature    gases    composition    activation    benefit    structure    dehydrogenation    gas    metal    interactions    fuel    co    synergistic    parts    chemistry    effect    sources    experimental    nanoparticle   

Project "4lessCH4" data sheet

The following table provides information about the project.

Coordinator
AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS 

Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006
website: http://www.csic.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 172˙932 €
 EC max contribution 172˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) coordinator 172˙932.00

Map

 Project objective

Methane (CH4) is a potent greenhouse gas that can come from many sources, both natural and manmade. The low temperature direct route to converting methane to methanol (CH3OH) a key feedstock for the production of chemicals that can also fuel vehicles or be reformed to produce hydrogen has long been a holy grail. The efficient use of CH4 emissions require catalysts that can activate the first C-H bond while suppressing complete dehydrogenation and avoiding CO/CO2 formation. The potential benefit of finding non-expensive and efficient catalysts for directly converting methane to methanol (DMTM), using only molecular oxygen, and perhaps water, is significant and new catalysts are being sought. This project aims to the rational design of such catalysts based on non-noble metal nanoalloys/reducible oxide systems. There are key challenges to be addressed, namely, to improve reactants activation, to obtain an understanding of the reaction mechanism and to improve selectivity. Real powder catalysts are too complex to enable us to disentagle the effect of the nature of the metallic phase (composition, structure, nanoparticle size), the role of the oxidic support and of metal-support interactions, and the role of alloying and water in controlling selectivity. The strategy here consists of creating and investigating model systems, which include essential parts of the real ones, but can still be studied at the atomic level using state-of-the-art computational methodology in chemistry. Calculations will be performed in close collaboration with experimental work employing well-defined model systems as well as powders. The synergistic power of theory and experiment is crucial to design new or improved catalysts. Theory will not only be used to explain experimental data, but also for pre-screening the behavior of catalysts. The goal is to develop basic principles for the rational design and optimization of nano-structured catalysts for mitigating greenhouse gases.

 Publications

year authors and title journal last update
List of publications.
2019 G. S. Otero, P. G. Lustemberg, F. Prado, M. V. Ganduglia-Pirovano
Relative Stability of Near-Surface Oxygen Vacancies at the CeO 2 (111) Surface upon Zirconium Doping
published pages: 625-638, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.9b09433
The Journal of Physical Chemistry C 124/1 2020-01-30

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "4LESSCH4" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "4LESSCH4" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More