Opendata, web and dolomites

TOPSPIN SIGNED

Topotronic multi-dimensional spin Hall nano-oscillator networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "TOPSPIN" data sheet

The following table provides information about the project.

Coordinator
GOETEBORGS UNIVERSITET 

Organization address
address: VASAPARKEN
city: GOETEBORG
postcode: 405 30
website: www.gu.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 2˙500˙000 €
 EC max contribution 2˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    GOETEBORGS UNIVERSITET SE (GOETEBORG) coordinator 2˙500˙000.00

Map

 Project objective

TOPSPIN will focus on spin Hall nano-oscillators (SHNOs), which are nano-sized, ultra-tunable, and CMOS compatible spin wave based microwave oscillators. TOPSPIN will push the boundaries of SHNO lithography, frequency, speed, and power consumption by combining topological insulators, having record high spin Hall efficiencies, with materials having ultra-high spin wave frequencies. TOPSPIN will reduce the required current densities 1-2 orders of magnitude compared to state-of-the-art, making SHNO operating currents approach 1 uA, and increase the SHNO operating frequencies an order of magnitude to as high as 300 GHz.

TOPSPIN will use mutually synchronized SHNOs to achieve orders of magnitude higher signal coherence and achieve novel functionality such as pattern matching and neuromorphic computing. TOPSPIN will demonstrate mutual synchronization of up to 1,000 SHNOs in chains, and as many as 1,000,000 SHNOs in very large-scale two-dimensional arrays. Using dipolar coupling between SHNOs fabricated on top of each other, three-dimensional mutual synchronization will also be demonstrated. As the signal coherence increases linearly with the number of mutually synchronized SHNOs the oscillator quality factor will improve by many orders of magnitude. TOPSPIN will also develop such arrays using magnetic tunnel junction stacks thus combining ultra-high coherence with the highest possible microwave output power.

TOPSPIN will demonstrate ultrafast pattern matching and neuromorphic computing using its SHNO networks. It will functionalize SHNOs to exhibit ultra-fast individual voltage controlled tuning and non-volatile tuning of both the SHNO frequency and the inter-SHNO coupling.

TOPSPIN will characterize its SHNOs using novel methods and techniques such as multichannel electrical measurements, time- and phase-resolved Brillouin Light Scattering microscopy, time-resolved Scanning Transmission X-ray Microscopy, and ultrafast pump-probe Transmission Electron Microscopy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPSPIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOPSPIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Growth regulation (2019)

The wide-spread bacterial toxin delivery systems and their role in multicellularity

Read More  

inhibiTOR (2020)

Novel selective mTORC1 inhibitors

Read More  

EffectiveTG (2018)

Effective Methods in Tame Geometry and Applications in Arithmetic and Dynamics

Read More