Opendata, web and dolomites

DEBOGAS SIGNED

Dilute Bose Gases at Positive Temperature

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DEBOGAS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT ZURICH 

Organization address
address: RAMISTRASSE 71
city: ZURICH
postcode: 8006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 203˙149 €
 EC max contribution 203˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT ZURICH CH (ZURICH) coordinator 203˙149.00

Map

 Project objective

The experimental realisation of Bose-Einstein condensation (BEC) in trapped alkali gases in 1995 triggered numerous mathematical investigations of the properties of dilute Bose gases. For the mathematical description of these experiments the Gross—Pitaevskii (GP) limit is relevant. In the past two decades there has been a substantial progress in the understanding of ground state properties of Bose gases in the GP limit, culminating in the recent rigorous justification of Bogoliubov’s theory for the ground state energy and for low lying excitations. Except for a recent contribution of me and my co-authors [1], the highly relevant GP limit at positive temperature has not been considered so far. The aim of the proposed project is to develop new mathematical tools to study dilute Bose gases at positive temperature. This will be done from two points of view: Thermodynamics and Dynamics. More precisely, in the first part of the project I plan to prove refined estimates (w.r.t. [1]) for the free energy in the GP limit which would yield a better understanding of how interactions affect the thermodynamic properties of such systems. In the second part I will investigate the dynamics of positive temperature states after the trapping potential will have been switched off and prove that a certain structure of the 1—pdm is stable under time evolution. Apart from asking two highly relevant questions in modern mathematical physics, the project is also interesting from a physics point of view since it would justify two frequently used approximations in the physics literature. [1] A. Deuchert, R. Seiringer, J. Yngvason, Bose-Einstein Condensation in a Dilute, Trapped Gas at Positive Temperaturre, Commun. Math. Phys. (2018). https://doi.org/10.1007/s00220-018-3239-0

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEBOGAS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEBOGAS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

AMPLE (2019)

A Study of the Notion of Ampleness in Model Theory and Tits Buildings

Read More  

Topo-circuit (2019)

Exploring topological phenomenon in RF circuits

Read More