Opendata, web and dolomites


Integrating torrefaction of pulp and paper industry sludge with microbial conversion: A new approach to produce bioenergy carriers and biochemicals in a view of bio and circular economy.

Total Cost €


EC-Contrib. €






Project "TOPIS-BioCirc" data sheet

The following table provides information about the project.


Organization address
address: KREUTZWALDI 1
city: TARTU
postcode: 51014

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Estonia [EE]
 Total cost 154˙193 €
 EC max contribution 154˙193 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EESTI MAAULIKOOL EE (TARTU) coordinator 154˙193.00


 Project objective

Pulp and paper industries (PPI) are known for producing large quantities of organic residues. Considering the economic and environmental aspects, the resource recovery from PPI wastes is necessary in order to increase the resource efficiency. In that regard, developing novel biorefinery processes to produce multiple products from PPI wastes is interesting under bio and circular economy. On the other hand, the interest on torrefied biomass is rising over the globe as it can replace the coal. However, the economics of torrefied pellets is not competitive compared to the coal. As the majority of the torrefied pellets production costs are coming from raw materials, sourcing them from low cost resources could be helpful to improve the economic competitiveness of the torrefied pellets over coal. To address the above said two issues, this project will study the feasibility of the torrefaction of pulp and paper industry sludge (PPIS) and integrating it with microbial conversion to produce bioenergy carriers i.e. bio-coal and bio-methane and volatile fatty acids. To achieve this, the expertise of the experienced researcher on biomass torrefaction, process modeling and feasibility analysis will be combined with the expertise of the supervisor on microbial conversion processes and biomass pretreatment. Initially, torrefaction of dewatered PPIS will be carried out in order to establish the biofuel characteristics of torrefied PPIS. Later, anaerobic digestion of torrefaction condensate produced through the torrefaction of PPIS will be studied at varied operating conditions in order to establish the production potential of bio-methane and volatile fatty acids. Finally, the proposed process integration will be simulated to a commercial scale from laboratory experimental results in order to evaluate the techno-economic and environmental feasibility. The proposed study can help the European society to shift toward low carbon economy and achieve sustainable development goals.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPIS-BIOCIRC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOPIS-BIOCIRC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

CIGNUS (2019)

CuInGaSe Nanowires Under the Sun

Read More  
lastchecktime (2022-08-11 1:42:13) correctly updated