Opendata, web and dolomites

DIMAF SIGNED

Direct Imaging and Manipulation of Antiferromagnets

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DIMAF" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 184˙707.00

Map

 Project objective

Antiferromagnetic materials are very promising candidates for the development of new data storage devices with a low power comsumption, which explains the recent growing interest for the field of antiferromagnetic spintronics. However, the study of these systems is hindered by the difficulty to image their magnetic state in real space with most of the available microscopy techniques. The recently developed nitrogen-vacancy (NV) center magnetometry appears to be a solution to this problem. It probes the magnetic order via the measurement of the stray field present at the surface of the sample. The field is measured using the Zeeman shifts of the electronic spin sublevels of a single nitrogen-vacancy defect in diamond. The single NV defect is placed at the apex of a nanopillar in a diamond tip integrated into an atomic force microscope, allowing to scan in close proximity to the sample surface. The goal of this project is to use this technique to explore the magnetic order at the nanoscale in antiferromagnetic materials which are relevant for applications in spintronics. The magnetic configuration of the modulated antiferromagnet BiFeO3 will be investigated. The experiments will first focus on the effects of epitaxial strain on the antiferromagnetic order. In a second step, the antiferromagnetic structure will be manipulated with local strain and spin currents. The NV-center magnetometer will be used to image directly the induced modifications. This project offers high-quality technical training in NV-center magnetometry as well as the opportunity to acquire and strengthen transferable skills and to participate to international collaborations. It will thus foster the career development of the researcher in the growing and highly innovative field of antiferromagnetic spintronics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DIMAF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DIMAF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GenEl (2020)

General readout electronics for cross-sectoral application in European research infrastructure

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More