Opendata, web and dolomites

BALLISTOP SIGNED

Revealing 1D ballistic charge and spin currents in second order topological insulators

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BALLISTOP project word cloud

Explore the words cloud of the BALLISTOP project. It provides you a very rough idea of what is the project "BALLISTOP" about.

conduction    currents    nanowires    explaining    ballisticity    class    transistors    surfaces    protected    probe    quantum    equilibrium    helical    spectroscopies    realize    propagation    ballistic    3d    electrometers    insulating    electric    sotis    direction    perfectly    modes    crystals    effect    1d    magnetometers    despite    bulk    dominated    tis    frequency    reveal    hall    samples    refined    2dti    locked    predicted    crystalline    detect    superconducting    condensed    temperature    edges    existence    counter    ideal    transport    platelets    hinge    character    topological    soti    belong    2dtis    discovery    conduct    computing    conducting    charge    insulators    topologically    newly    single    bismuth    superconductor    magnetism    discovered    lastly    bi    possibilities    propagating    spatial    dissipationlessly    quasi    shown    one    tools    electron    hybrid    paths    ranging    velocity    opens    nature    orbital    proximity    sensitivity    materials    majorana    physics    semimetallic    achievement    experimental    surface    orientation    greatest    dissipationless    circuits    coexist    tunnel    room    intriguing    edge    spin    ti    avenues   

Project "BALLISTOP" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙432˙676 €
 EC max contribution 2˙432˙676 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 2˙432˙676.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

One of the greatest recent achievement in Condensed matter physics is the discovery of a new class of materials, Topological Insulators (TI), whose bulk is insulating, while the edges conduct current in a quasi-ideal way. In particular, the 1D edges of 2DTI realize the Quantum Spin Hall state, where current is carried dissipationlessly by two counter-propagating ballistic edge states with a spin orientation locked to that of the propagation direction (a helical edge state). This opens many possibilities, ranging from dissipationless charge and spin transport at room temperature to new avenues for quantum computing. We propose to investigate charge and spin currents in a newly discovered class of TIs, Second Order Topological Insulators (SOTIs), i.e. 3D crystals with insulating bulk and surfaces, but perfectly conducting (topologically protected) 1D helical “hinge” states. Bismuth, despite its well-known semimetallic character, has recently been shown theoretically to belong to this class of materials, explaining our recent intriguing findings on nanowires. Our goal is to reveal, characterize and exploit the unique properties of SOTIs, in particular the high velocity, ballistic, and dissipationless hinge currents. We will probe crystalline bismuth samples with refined new experimental tools. The superconducting proximity effect will reveal the spatial distribution of conduction paths, and test the ballisticity of the hinge modes (that may coexist with non-topological surface modes). High frequency and tunnel spectroscopies of hybrid superconductor/Bi circuits will probe their topological nature, including the existence of Majorana modes. We will use high sensitivity magnetometers to detect the orbital magnetism of SOTI platelets, which should be dominated by topological edge currents. Lastly, we propose to detect the predicted equilibrium spin currents in 2DTIs and SOTIs via the generated electric field, using single electron transistors-based electrometers.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BALLISTOP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BALLISTOP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More  

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

PLAT_ACE (2019)

A new platform technology for the on-demand access to large acenes

Read More