Opendata, web and dolomites

EAR SIGNED

Audio-based Mobile Health Diagnostics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EAR project word cloud

Explore the words cloud of the EAR project. It provides you a very rough idea of what is the project "EAR" about.

clinical    sensitive    associating    computer    body    onsets    grail    ethical    medical    fine    stage    diagnostic    resource    local    power    confounding    optimization    afford    medically    health    computation    patient    affordable    proposes    mobile    sampling    maximizing    sounds    hoc    arise    audio    deal    additional    people    daily    hungry    accuracy    ranges    breathing    diagnosis    near    robustness    optimized    computational    potentially    sparse    sighs    symptoms    demands    raised    data    noise    sensors    science    itself    cheap    voice    offers    lives    link    context    fit    limits    indicators    powerful    violates    obvious    automatically    tracking    delivering    inherent    disease    diagnostics    theory    fact    advancements    of    time    cloud    human    embed    rules    source    deployment    away    models    analytics    perspective    wearable    nature    ad    sort    holy    capability    microphones    pilots    hardware    sensing    monitoring    generally    wild    populations    threaten    collection    quantify    grounded    framework    privacy    underutilized    reaching   

Project "EAR" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙493˙724 €
 EC max contribution 2˙493˙724 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2024-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 2˙493˙724.00

Map

 Project objective

Mobile health is becoming the holy grail for affordable medical diagnostics. It has the potential of associating human behaviour with medical symptoms automatically and at early disease stage; it also offers cheap deployment, reaching populations generally not able to afford diagnosis and delivering a level of monitoring so fine which will likely improve diagnostic theory itself. The advancements of technology offer new ranges of sensing and computation capability with the potential of further improving the reach of mobile health. Audio sensing through microphones of mobile devices has recently being recognized as a powerful and yet underutilized source of medical information: sounds from the human body (e.g., sighs, breathing sounds and voice) are indicators of disease or disease onsets. The current pilots, while generally medically grounded, are potentially ad-hoc from the perspective of key areas of computer science; specifically, in their approaches to computational models and how the system resource demands are optimized to fit within the limits of the mobile devices, as well as in terms of robustness needed for tracking people in their daily lives. Audio sensing also comes with challenges which threaten its use in clinical context: its power hungry nature and the fact that audio data is very sensitive and the collection of this sort of data for analytics violates obvious ethical rules. This work proposes models to link sounds to disease diagnosis and to deal with the inherent issues raised by in-the-wild sensing: noise and privacy concerns. We exploit these audio models in wearable systems maximizing the use of local hardware resources with power optimization and accuracy in both near real time and sparse audio sampling. Privacy will arise as a by-product taking away the need of cloud analytics. Moreover, the framework will embed the ability to quantify the diagnostic uncertainty and consider patient context as confounding factors via additional sensors.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More