Opendata, web and dolomites

NIRLAMS SIGNED

NIR Light Harvesting in Artificial Protein-Lipid-Chromophores Coassembled Molecular System

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NIRLAMS project word cloud

Explore the words cloud of the NIRLAMS project. It provides you a very rough idea of what is the project "NIRLAMS" about.

solubility    biological    hydrophobic    conversion    innovative    added    filed    aqueous    mostly    broaden    device    annihilation    triplet    ideal    molecular    introducing    uc    coassembly    photon    assembly    green    oxygenated    band    synthetic    hope    invasive    reported    constantly    lipid    energy    chromophores    transmitted    phenomenon    co    everlasting    efficient    solubilize    spectrum    fact    nir    bonding    oxygen    deoxygenated    upconversion    prevent    solar    upconverting    environment    region    emission    inflow    depleting    fossils    sub    limit    fabrication    limitation    carbon    overcome    nonpolar    responsive    tta    irradiance    harvesting    organic    fuels    domains    immensely    vis    conceptual    overcoming    practical    quenching    gap    solution    solvents    chromophore    limited    photons    cells    protein    economic    emergence    function    form    solid    photonic    system    pressure    though    dyes    scientific    contributed    light    shockley    community    queisser    constraints    putting    polymers    researched    network    thick   

Project "NIRLAMS" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 203˙852 €
 EC max contribution 203˙852 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 203˙852.00

Map

 Project objective

The depleting fossils fuels added by their high carbon emission have been constantly putting pressure on scientific community to find an economic solution in the form of green energy. The utilization of everlasting solar energy is possible solution which has been researched for a long now but has constraints of Shockley Queisser Limit. The recent emergence of photon upconversion has given hope to overcome this limit by upconverting the transmitted sub band gap photons to band gap responsive light. Among the existing UC phenomenon triplet-triplet annihilation based photon upconversion (TTA-UC) leading the way because of its function at sub solar irradiance and 1.5 solar spectrum. Most of the TTA-UC systems are limited to Vis to Vis UC which though have contributed immensely for conceptual development of the filed; however for practical applications in photonic devices NIR to Vis TTA-UC would be more ideal. This is because; (1) NIR is low energy non-invasive light which is useful for biological applications and (2) can overcome the Shockley Queisser Limit of solar cells. On the other hand NIR to Vis TTA-UC systems are although reported they are mostly limited to deoxygenated organic solvents which have limitation of device fabrication. This is due to low solubility of NIR to Vis dyes in synthetic polymers and quenching by molecular oxygen. Therefore, the present proposal is aimed at overcoming these issues by introducing an innovative approach of protein-lipid-chromophores co-assembly both for aqueous and solid state NIR to Vis TTA-UC in oxygenated environment. The proposed approach is supported by the fact that nonpolar domains of protein-lipid coassembly can solubilize the hydrophobic NIR to Vis dyes and thick H-bonding network of protein can prevent oxygen inflow into chromophore region. The proposed project would lead to a new conceptual development for efficient solar upconversion and will broaden the solar light harvesting range for solar energy conversion system

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NIRLAMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NIRLAMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ROMANCE (2020)

StRategies fOr iMproving Agronomic practices based oN miCrobiomEs.

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More