Opendata, web and dolomites

NIRLAMS SIGNED

NIR Light Harvesting in Artificial Protein-Lipid-Chromophores Coassembled Molecular System

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NIRLAMS project word cloud

Explore the words cloud of the NIRLAMS project. It provides you a very rough idea of what is the project "NIRLAMS" about.

filed    thick    irradiance    light    transmitted    reported    quenching    conversion    added    molecular    limitation    dyes    conceptual    protein    triplet    mostly    shockley    sub    device    everlasting    depleting    photons    pressure    photon    solution    band    synthetic    coassembly    phenomenon    region    contributed    invasive    solid    network    though    function    fossils    bonding    polymers    nir    oxygen    form    upconversion    responsive    limited    fabrication    chromophore    vis    system    fact    uc    cells    ideal    biological    assembly    tta    domains    economic    community    emergence    constantly    efficient    researched    broaden    spectrum    environment    practical    solar    photonic    lipid    emission    overcoming    scientific    immensely    annihilation    green    upconverting    harvesting    energy    hydrophobic    solubility    oxygenated    hope    co    putting    introducing    solubilize    constraints    carbon    innovative    deoxygenated    aqueous    chromophores    limit    queisser    gap    nonpolar    inflow    organic    overcome    prevent    solvents    fuels   

Project "NIRLAMS" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 203˙852 €
 EC max contribution 203˙852 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 203˙852.00

Map

 Project objective

The depleting fossils fuels added by their high carbon emission have been constantly putting pressure on scientific community to find an economic solution in the form of green energy. The utilization of everlasting solar energy is possible solution which has been researched for a long now but has constraints of Shockley Queisser Limit. The recent emergence of photon upconversion has given hope to overcome this limit by upconverting the transmitted sub band gap photons to band gap responsive light. Among the existing UC phenomenon triplet-triplet annihilation based photon upconversion (TTA-UC) leading the way because of its function at sub solar irradiance and 1.5 solar spectrum. Most of the TTA-UC systems are limited to Vis to Vis UC which though have contributed immensely for conceptual development of the filed; however for practical applications in photonic devices NIR to Vis TTA-UC would be more ideal. This is because; (1) NIR is low energy non-invasive light which is useful for biological applications and (2) can overcome the Shockley Queisser Limit of solar cells. On the other hand NIR to Vis TTA-UC systems are although reported they are mostly limited to deoxygenated organic solvents which have limitation of device fabrication. This is due to low solubility of NIR to Vis dyes in synthetic polymers and quenching by molecular oxygen. Therefore, the present proposal is aimed at overcoming these issues by introducing an innovative approach of protein-lipid-chromophores co-assembly both for aqueous and solid state NIR to Vis TTA-UC in oxygenated environment. The proposed approach is supported by the fact that nonpolar domains of protein-lipid coassembly can solubilize the hydrophobic NIR to Vis dyes and thick H-bonding network of protein can prevent oxygen inflow into chromophore region. The proposed project would lead to a new conceptual development for efficient solar upconversion and will broaden the solar light harvesting range for solar energy conversion system

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NIRLAMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NIRLAMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

G20LAP (2019)

G20 Legitimacy and Policymaking

Read More  

CRAS (2019)

Climate change and Resilience of Agricultural System: an econometric and computational analysis

Read More