Opendata, web and dolomites

MarshFlux SIGNED

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MarshFlux" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 276˙498 €
 EC max contribution 276˙498 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2020
 Duration (year-month-day) from 2020-01-04   to  2023-01-03

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 276˙498.00
2    ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING MCGILL UNIVERSITY CA (MONTREAL) partner 0.00

Map

 Project objective

Coastal wetlands are globally important ecosystems providing valuable ecosystem services, such as carbon sequestration over long timescales, affecting global carbon cycling and climate modulation. The amount of carbon sequestered, and therefore the net long-term global cooling potential of coastal marshes, however, is affected by complex biogeochemical reactions in marsh soils, which may produce and/or consume all three of the major greenhouse gases (GHGs) (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)). The magnitude and direction of these fluxes, and whether marsh soils act as a source or sink of GHGs, is affected by a variety of environmental factors which are predicted to vary with projected global change. MarshFlux, therefore, aims to address fundamental gaps in understanding of how the global cooling potential of coastal marshes will be affected by responses of biogeochemical reaction rates and GHG fluxes to global change. The effect of multiple drivers of global change on the response of GHG fluxes and key microbial processes for the consumption and production of N2O and CH4, will be investigated using a novel combination of laboratory incubations and mesocosm experiments. Laboratory incubation experiments mimicking modelled global change scenarios will be conducted to constrain the effects of drivers on marsh soil biogeochemical reaction rates and subsequent GHG dynamics, focusing on temperature, nutrient-loading and salinity. The results of these experiments, while critical themselves, will then inform mesocosm experiments to allow for the assessment of the whole ecosystem (soil, water and vegetation) response to global change under current and predicted future conditions. This research is critical for effective management of coastal wetlands to maintain their blue carbon value under future global change.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MARSHFLUX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MARSHFLUX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

POSPORI (2019)

Polymer Optical Sensors for Prolonged Overseeing the Robustness of civil Infrastructures

Read More  

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

Topo-circuit (2019)

Exploring topological phenomenon in RF circuits

Read More