Opendata, web and dolomites

SweetBrain SIGNED

A new perspective on the metabolic pathway to neuronal dysfunction: Using organs on a chip to elucidate the role of the brain microvasculature

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SweetBrain project word cloud

Explore the words cloud of the SweetBrain project. It provides you a very rough idea of what is the project "SweetBrain" about.

regarding    diminish    nervous    remaining    functional    glucose    communications    mechanisms    fundamental    thereby    edge    organ    perspective    altering    homeostasis    diseases    ignoring    despite    metabolites    mainly    hypothesize    revealed    revolutionize    neuronal    little    nvu    questions    overcomes    primarily    pass    modeling    correlated    illuminating    metabolically    models    diabetic    function    drawing    scarcity    ooc    relationship    neurodegeneration    clear    hyperglycemia    astrocytes    cure    metabolism    disease    cns    chip    central    model    physiology    elusive    elucidate    brain    limitations    functionally    types    crosstalk    grow    coupled    hypothesis    previously    suggest    endothelium    pointing    treatment    separately    gatekeeper    neurons    cell    dysfunction    drives    capacity    interactions    decades    observations    cutting    subsequently    metabolic    unexplored    vasculature    neurodegenerative    populations    human    neurovascular    direct    underpinnings    coupling    levels    unconsidered    vein   

Project "SweetBrain" data sheet

The following table provides information about the project.

Coordinator
TEL AVIV UNIVERSITY 

Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978
website: http://www.tau.ac.il/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙487˙438 €
 EC max contribution 1˙487˙438 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-07-01   to  2025-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 1˙487˙438.00

Map

 Project objective

Despite decades of research, the underpinnings of central nervous system (CNS) diseases and clear pathways to effective treatment remain elusive, mainly because of a scarcity of adequate models and methods with the capacity to elucidate human brain physiology. Recent studies suggest that high glucose levels are correlated with neuronal dysfunction and neurodegeneration, yet very little is known about the mechanisms of this relationship. Research in this vein has focused primarily on direct metabolic interactions between neurons and astrocytes, ignoring other cell populations in the neurovascular unit (NVU) that might have a meaningful role. My recent research revealed that the brain vasculature—the ‘gatekeeper’ through which all metabolites must pass to reach the neurons—has direct metabolic coupling with the neurons. Drawing from these observations, I adopt a previously unconsidered perspective and propose that the vasculature drives the neurodegenerative effects of hyperglycemia. Specifically, I hypothesize that high glucose levels change the metabolic function of the brain vasculature, thereby altering the direct endothelium-neuronal crosstalk and triggering neuronal dysfunction. To investigate this hypothesis, I will develop cutting-edge Organ-on-a-Chip (OoC) technology that overcomes the limitations of modeling NVU functionality and cell-cell interactions. Specifically, I will: (1) establish a human-relevant NVU-OoC model for metabolic and functional interactions, in which different cell types grow separately while remaining metabolically and functionally coupled; (2) identify the major metabolic and functional interactions in the human NVU at homeostasis and under diabetic conditions; and subsequently (3) target the vasculature communications to diminish neuronal dysfunction. This research has the potential to revolutionize the study of CNS disease, pointing to an unexplored pathway to a cure, and illuminating fundamental questions regarding brain metabolism.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SWEETBRAIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SWEETBRAIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

BALANCE (2019)

Mapping Dispersion Spectroscopically in Large Gas-Phase Molecular Ions

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More