Opendata, web and dolomites

AGERPIX SIGNED

Artificial intelligence for yield estimations at fruit orchards

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AGERPIX project word cloud

Explore the words cloud of the AGERPIX project. It provides you a very rough idea of what is the project "AGERPIX" about.

estimations    size    adaptations    plant    customer    labour    health    140ha    54    grape    299    minor    harvest    predictions    french    commercialization    fruit    envision    variables    nutrients    plan    warehouses    fruits    force    markets    growers    2024    9m    workers    5m    materials    avocado    intensity    portfolio    ongoing    quality    160m    machinery    diameter    leafiness    50    crop    packing    whale    intensive    cold    careful    consuming    yield    algorithms    time    validations    revenues    strategy    planning    analysed    heights    tangerine    vigour    producers    provides    estimation    manual    orchard    service    b2b    nurfri    piloting    apple    artificial    table    peach    decisions    jobs    precision    blue    spanish    logistical    517    season    thinning    grapes    treatments    storage    38m    strengthen    business    codesian    ai    successful    extensive    varieties    created    95    inaccurate    data    reduce       practical    124    accurate    intelligence    validation    mention    agerpix    operations    sensor    extremely    mid    ebit    gathering    ranges    replicated    global    counting    worth    easily   

Project "AGERPIX" data sheet

The following table provides information about the project.

Coordinator
CODESIAN SOFTWARE TECH SL 

Organization address
address: CL DEL NARANJO 6 4 44
city: GOLMAYO (SORIA)
postcode: 42190
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CODESIAN SOFTWARE TECH SL ES (GOLMAYO (SORIA)) coordinator 50˙000.00

Map

 Project objective

'Crop yield estimation is an important task in apple orchard management. The current practice of yield estimation is based on manual counting of fruits by workers. It is extremely time-consuming, labour-intensive, highly inaccurate, and it is not practical for large fields. Agerpix provides accurate predictions to help growers improve fruit quality and reduce operating costs by making better decisions on intensity of fruit thinning and plant nutrients and treatments (mid-season), size of the harvest labour force, machinery and materials and logistical planning of storage, packing and cold warehouses, not to mention the development of a commercialization strategy tailored to the expected production, achieving a 50% cost reduction in orchard management operations. Artificial Intelligence algorithms are used to identify, measure diameter ranges, and envision the fruit leafiness and vigour, providing yield estimations over the plant heights and plant health variables. Several piloting projects for the yield estimation system at top apple producers (Nurfri - #1 Spanish and Blue Whale #1 French among others) have been deployed with 140ha analysed with a precision of 90-95%. AGERPIX system has been adapted to four different apple varieties. After successful validation activities, CODESIAN is developing a customer portfolio worth 38M€ in five years. However, because AGERPIX is offering as a B2B service and because the technology can be easily replicated to other fruits (ongoing validations with table grapes and peach with minor AI/sensor adaptations), a careful scale-up design to strengthen the business plan towards covering global needs fruit markets (apple: 517 M€; table grape: 124 M€; peach: 160M€; tangerine: 299 M€; avocado: 54 M€) is needed. After further data gathering through extensive validations across new fruits, CODESIAN projects 7,9M€ revenues with 4,5M€ EBIT and 60 new jobs created by 2024. '

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AGERPIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AGERPIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DNA DS (2019)

DNA Data storage

Read More  

ERGOVIAkinematix (2018)

New wearable measurement devices for Industry 4.0 based on gaming motion-capture system

Read More  

LTS (2020)

LEARNING TO SLEEP: INCREASING HEALTH THROUGH BETTER SLEEP

Read More