Opendata, web and dolomites

AGERPIX SIGNED

Artificial intelligence for yield estimations at fruit orchards

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AGERPIX project word cloud

Explore the words cloud of the AGERPIX project. It provides you a very rough idea of what is the project "AGERPIX" about.

validation    avocado    artificial    160m    mid    envision    markets    gathering    blue    extremely    global    orchard    nutrients    54    inaccurate    ranges    customer    piloting    adaptations    packing    health    harvest    workers    extensive    table    operations    plan    5m    machinery    consuming    nurfri    precision    ebit    logistical    yield    intensive    business    careful    counting    agerpix    tangerine    intelligence    sensor    299    2024    140ha    replicated    warehouses    producers    fruits    planning    vigour    variables    varieties    mention    grape    strengthen    provides    portfolio    fruit    ongoing    jobs    ai    size    codesian    strategy    growers    algorithms    grapes    estimation    labour    manual    heights    whale    successful    plant    season    decisions    95    intensity    diameter    estimations    validations    service    leafiness    124    50    517    accurate       cold    data    worth    storage    time    treatments    analysed    38m    b2b    peach    predictions    easily    revenues    apple    materials    created    spanish    reduce    commercialization    minor    9m    crop    quality    practical    french    force    thinning   

Project "AGERPIX" data sheet

The following table provides information about the project.

Coordinator
CODESIAN SOFTWARE TECH SL 

Organization address
address: CL DEL NARANJO 6 4 44
city: GOLMAYO (SORIA)
postcode: 42190
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CODESIAN SOFTWARE TECH SL ES (GOLMAYO (SORIA)) coordinator 50˙000.00

Map

 Project objective

'Crop yield estimation is an important task in apple orchard management. The current practice of yield estimation is based on manual counting of fruits by workers. It is extremely time-consuming, labour-intensive, highly inaccurate, and it is not practical for large fields. Agerpix provides accurate predictions to help growers improve fruit quality and reduce operating costs by making better decisions on intensity of fruit thinning and plant nutrients and treatments (mid-season), size of the harvest labour force, machinery and materials and logistical planning of storage, packing and cold warehouses, not to mention the development of a commercialization strategy tailored to the expected production, achieving a 50% cost reduction in orchard management operations. Artificial Intelligence algorithms are used to identify, measure diameter ranges, and envision the fruit leafiness and vigour, providing yield estimations over the plant heights and plant health variables. Several piloting projects for the yield estimation system at top apple producers (Nurfri - #1 Spanish and Blue Whale #1 French among others) have been deployed with 140ha analysed with a precision of 90-95%. AGERPIX system has been adapted to four different apple varieties. After successful validation activities, CODESIAN is developing a customer portfolio worth 38M€ in five years. However, because AGERPIX is offering as a B2B service and because the technology can be easily replicated to other fruits (ongoing validations with table grapes and peach with minor AI/sensor adaptations), a careful scale-up design to strengthen the business plan towards covering global needs fruit markets (apple: 517 M€; table grape: 124 M€; peach: 160M€; tangerine: 299 M€; avocado: 54 M€) is needed. After further data gathering through extensive validations across new fruits, CODESIAN projects 7,9M€ revenues with 4,5M€ EBIT and 60 new jobs created by 2024. '

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AGERPIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AGERPIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DNA DS (2019)

DNA Data storage

Read More  

ERGOVIAkinematix (2018)

New wearable measurement devices for Industry 4.0 based on gaming motion-capture system

Read More  

Magnesys (2019)

Efficient filtering of metallic impurities in food processing

Read More