Opendata, web and dolomites

AGERPIX SIGNED

Artificial intelligence for yield estimations at fruit orchards

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AGERPIX project word cloud

Explore the words cloud of the AGERPIX project. It provides you a very rough idea of what is the project "AGERPIX" about.

practical    strengthen    envision    54    spanish    intensity    5m    nutrients    yield    peach    business    estimations    ranges    counting    fruits    growers    140ha    plant    season    storage    validation    varieties    mention    artificial    operations    algorithms    sensor    estimation    diameter    grapes    easily    160m    crop    whale    worth    plan    thinning    intensive    orchard    b2b    force    machinery    logistical    nurfri    jobs    harvest    extremely    heights    ebit    fruit    tangerine    validations    reduce    labour    created    treatments    124    intelligence    service    portfolio    replicated    9m    grape    extensive    time    size    apple    planning    global    accurate    warehouses    codesian    careful    analysed    agerpix    consuming    data    strategy    successful    2024    inaccurate    ongoing    quality    vigour    ai    gathering    workers    adaptations    customer    markets    decisions    299    french    variables    predictions    517    leafiness    commercialization    blue    materials    minor       cold    manual    95    packing    health    mid    avocado    producers    table    38m    revenues    provides    piloting    50    precision   

Project "AGERPIX" data sheet

The following table provides information about the project.

Coordinator
CODESIAN SOFTWARE TECH SL 

Organization address
address: CL DEL NARANJO 6 4 44
city: GOLMAYO (SORIA)
postcode: 42190
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CODESIAN SOFTWARE TECH SL ES (GOLMAYO (SORIA)) coordinator 50˙000.00

Map

 Project objective

'Crop yield estimation is an important task in apple orchard management. The current practice of yield estimation is based on manual counting of fruits by workers. It is extremely time-consuming, labour-intensive, highly inaccurate, and it is not practical for large fields. Agerpix provides accurate predictions to help growers improve fruit quality and reduce operating costs by making better decisions on intensity of fruit thinning and plant nutrients and treatments (mid-season), size of the harvest labour force, machinery and materials and logistical planning of storage, packing and cold warehouses, not to mention the development of a commercialization strategy tailored to the expected production, achieving a 50% cost reduction in orchard management operations. Artificial Intelligence algorithms are used to identify, measure diameter ranges, and envision the fruit leafiness and vigour, providing yield estimations over the plant heights and plant health variables. Several piloting projects for the yield estimation system at top apple producers (Nurfri - #1 Spanish and Blue Whale #1 French among others) have been deployed with 140ha analysed with a precision of 90-95%. AGERPIX system has been adapted to four different apple varieties. After successful validation activities, CODESIAN is developing a customer portfolio worth 38M€ in five years. However, because AGERPIX is offering as a B2B service and because the technology can be easily replicated to other fruits (ongoing validations with table grapes and peach with minor AI/sensor adaptations), a careful scale-up design to strengthen the business plan towards covering global needs fruit markets (apple: 517 M€; table grape: 124 M€; peach: 160M€; tangerine: 299 M€; avocado: 54 M€) is needed. After further data gathering through extensive validations across new fruits, CODESIAN projects 7,9M€ revenues with 4,5M€ EBIT and 60 new jobs created by 2024. '

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AGERPIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AGERPIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DNA DS (2019)

DNA Data storage

Read More  

Keelcrab (2019)

Keelcrab the Drone for an automated hull cleaning: fast & essential

Read More  

ERGOVIAkinematix (2018)

New wearable measurement devices for Industry 4.0 based on gaming motion-capture system

Read More