Opendata, web and dolomites

AGERPIX SIGNED

Artificial intelligence for yield estimations at fruit orchards

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AGERPIX project word cloud

Explore the words cloud of the AGERPIX project. It provides you a very rough idea of what is the project "AGERPIX" about.

2024    consuming    vigour    quality    grapes    140ha    299    codesian    minor    intensity    fruits    storage    logistical    peach    varieties    cold    practical    9m    fruit    extremely    growers    variables    inaccurate    mention    plan    reduce    estimation    artificial    5m    data    54    strengthen    successful    validation    careful    sensor    diameter    revenues    124    adaptations    time    crop    avocado    force    accurate    created    517    global    replicated    validations    whale    intensive    estimations    precision    manual       easily    orchard    health    b2b    operations    strategy    labour    portfolio    workers    markets    nurfri    blue    customer    table    commercialization    gathering    packing    mid    thinning    french    extensive    50    yield    producers    leafiness    provides    envision    service    planning    spanish    ebit    materials    harvest    warehouses    tangerine    business    piloting    nutrients    160m    machinery    plant    algorithms    agerpix    ongoing    jobs    heights    counting    worth    apple    season    treatments    ai    38m    analysed    intelligence    ranges    95    grape    size    decisions    predictions   

Project "AGERPIX" data sheet

The following table provides information about the project.

Coordinator
CODESIAN SOFTWARE TECH SL 

Organization address
address: CL DEL NARANJO 6 4 44
city: GOLMAYO (SORIA)
postcode: 42190
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CODESIAN SOFTWARE TECH SL ES (GOLMAYO (SORIA)) coordinator 50˙000.00

Map

 Project objective

'Crop yield estimation is an important task in apple orchard management. The current practice of yield estimation is based on manual counting of fruits by workers. It is extremely time-consuming, labour-intensive, highly inaccurate, and it is not practical for large fields. Agerpix provides accurate predictions to help growers improve fruit quality and reduce operating costs by making better decisions on intensity of fruit thinning and plant nutrients and treatments (mid-season), size of the harvest labour force, machinery and materials and logistical planning of storage, packing and cold warehouses, not to mention the development of a commercialization strategy tailored to the expected production, achieving a 50% cost reduction in orchard management operations. Artificial Intelligence algorithms are used to identify, measure diameter ranges, and envision the fruit leafiness and vigour, providing yield estimations over the plant heights and plant health variables. Several piloting projects for the yield estimation system at top apple producers (Nurfri - #1 Spanish and Blue Whale #1 French among others) have been deployed with 140ha analysed with a precision of 90-95%. AGERPIX system has been adapted to four different apple varieties. After successful validation activities, CODESIAN is developing a customer portfolio worth 38M€ in five years. However, because AGERPIX is offering as a B2B service and because the technology can be easily replicated to other fruits (ongoing validations with table grapes and peach with minor AI/sensor adaptations), a careful scale-up design to strengthen the business plan towards covering global needs fruit markets (apple: 517 M€; table grape: 124 M€; peach: 160M€; tangerine: 299 M€; avocado: 54 M€) is needed. After further data gathering through extensive validations across new fruits, CODESIAN projects 7,9M€ revenues with 4,5M€ EBIT and 60 new jobs created by 2024. '

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AGERPIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AGERPIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DeltaQon (2019)

IOT and cloud computing for online medical analysis service platform

Read More  

MindTrack (2019)

Analysis of eye vergence responses for the early detection and monitoring of cognitive and mental disorders

Read More  

LIVELMIA (2019)

Innovative assay for microRNAs analysis

Read More