Opendata, web and dolomites

AGERPIX SIGNED

Artificial intelligence for yield estimations at fruit orchards

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AGERPIX project word cloud

Explore the words cloud of the AGERPIX project. It provides you a very rough idea of what is the project "AGERPIX" about.

strategy    data    gathering    grapes    38m    estimation    varieties    extensive    avocado    fruits    50    plant    reduce    validations    artificial    minor    heights    160m    thinning    algorithms    spanish    storage    replicated    ai    health    analysed    portfolio    machinery    accurate    517    intensive    ebit    crop    140ha    estimations    time    cold    precision    workers    extremely    business    plan    treatments    grape    95    ongoing    124    piloting    tangerine    table    sensor    practical    decisions    codesian    easily    b2b    successful    leafiness    provides    logistical    packing    careful    season    jobs    predictions    markets    vigour    5m    fruit    customer    materials    counting    intelligence    variables    global    warehouses    revenues    strengthen    whale    harvest    worth    nurfri    orchard    nutrients    service    operations    intensity    size    apple    force    mention    consuming    labour    envision    mid    299    producers    french    agerpix    ranges    yield       blue    54    manual    adaptations    growers    2024    planning    inaccurate    created    diameter    commercialization    validation    quality    9m    peach   

Project "AGERPIX" data sheet

The following table provides information about the project.

Coordinator
CODESIAN SOFTWARE TECH SL 

Organization address
address: CL DEL NARANJO 6 4 44
city: GOLMAYO (SORIA)
postcode: 42190
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CODESIAN SOFTWARE TECH SL ES (GOLMAYO (SORIA)) coordinator 50˙000.00

Map

 Project objective

'Crop yield estimation is an important task in apple orchard management. The current practice of yield estimation is based on manual counting of fruits by workers. It is extremely time-consuming, labour-intensive, highly inaccurate, and it is not practical for large fields. Agerpix provides accurate predictions to help growers improve fruit quality and reduce operating costs by making better decisions on intensity of fruit thinning and plant nutrients and treatments (mid-season), size of the harvest labour force, machinery and materials and logistical planning of storage, packing and cold warehouses, not to mention the development of a commercialization strategy tailored to the expected production, achieving a 50% cost reduction in orchard management operations. Artificial Intelligence algorithms are used to identify, measure diameter ranges, and envision the fruit leafiness and vigour, providing yield estimations over the plant heights and plant health variables. Several piloting projects for the yield estimation system at top apple producers (Nurfri - #1 Spanish and Blue Whale #1 French among others) have been deployed with 140ha analysed with a precision of 90-95%. AGERPIX system has been adapted to four different apple varieties. After successful validation activities, CODESIAN is developing a customer portfolio worth 38M€ in five years. However, because AGERPIX is offering as a B2B service and because the technology can be easily replicated to other fruits (ongoing validations with table grapes and peach with minor AI/sensor adaptations), a careful scale-up design to strengthen the business plan towards covering global needs fruit markets (apple: 517 M€; table grape: 124 M€; peach: 160M€; tangerine: 299 M€; avocado: 54 M€) is needed. After further data gathering through extensive validations across new fruits, CODESIAN projects 7,9M€ revenues with 4,5M€ EBIT and 60 new jobs created by 2024. '

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AGERPIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AGERPIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

STURSKIN (2018)

Innovative products by using tanned sturgeon skin

Read More  

Woodywood pickering (2019)

Bio-based (fully renewable) cost effective Polymer for new generation of ecological Coatings leveraging a disruptive innovation in the use of Pickering emulsion.

Read More  

ADAPTOS (2019)

ADAPTOS - Changing the way bone voids are treated

Read More