Opendata, web and dolomites

PhotoRedesign SIGNED

Redesigning the Photosynthetic Light Reactions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PhotoRedesign" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 7˙496˙829 €
 EC max contribution 7˙496˙829 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-SyG
 Funding Scheme ERC-SyG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2026-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 2˙499˙900.00
2    MIKROBIOLOGICKY USTAV AV CR V.V.I CZ (PRAHA 4) participant 2˙498˙861.00
3    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) participant 2˙498˙068.00

Map

 Project objective

Oxygenic photosynthesis uses the energy of sunlight to generate the oxygen we breathe and the food we eat, but the vast majority of the received solar energy is not converted to biomass. Enhancing photosynthesis to improve the production of food, energy and high value compounds is a compellingly important challenge that has not been taken up yet, because it requires the modification and exchange of large ensembles of interacting photosynthesis components from different organisms.

For the first time, we will undertake the comprehensive redesign of photosynthesis to enhance its capacity to harvest and safely convert solar energy. To achieve this, we combine in our team unique and complementary expertise in genetics, biochemistry and biophysics in the full range of bacterial and plant photosynthetic organisms. We will combine genetic engineering with new approaches from synthetic biology and adaptive evolution to create a novel enhanced variant of photosynthesis in the model cyanobacterium Synechocystis as chassis. The ground-breaking overall objective is to combine photosystems from different photoautotrophic organisms, including de novo-designed antennas in reimagined photosystems.

By employing a multidisciplinary approach for combining different natural and de novo-designed photosynthesis modules in one adaptable bacterial chassis with the goal to create a novel enhanced type of photosynthesis, PhotoRedesign goes far beyond conventional applied and fundamental photosynthesis research. PhotoRedesign will establish new model systems and toolkits for the next generation of photosynthesis researchers, and it develops a novel concept for modifying complex processes, hitherto considered to be immutable. In consequence, PhotoRedesign will advance photosynthesis research and create the basis for improving the productivity of economically-relevant photosynthetic organisms.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHOTOREDESIGN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHOTOREDESIGN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

CARBOFLOW (2020)

Streamlined carbon dioxide conversion in ionic liquids – a platform strategy for modern carbonylation chemistry

Read More  

ii-MAX (2020)

Unravelling new immunity-independent mechanisms for durable resistance to blast fungi using MAX effectors

Read More