Opendata, web and dolomites


Learning Pixel-Perfect 3D Vision and Generative Modeling

Total Cost €


EC-Contrib. €






Project "PIPE" data sheet

The following table provides information about the project.


Organization address
address: OTAKAARI 1
city: ESPOO
postcode: 2150

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 1˙858˙013 €
 EC max contribution 1˙858˙013 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-05-01   to  2025-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AALTO KORKEAKOULUSAATIO SR FI (ESPOO) coordinator 1˙858˙013.00


 Project objective

A fascinating tension exists between computer vision and computer graphics. Decades of research efforts have led to the ability of graphics algorithms to simulate the world to a degree often indistinguishable from reality -- given an accurate enough model of scene geometry and appearance. Similarly, decades of ingenuity have given computer vision techniques the already, at times, superhuman capability of detecting, recognizing, and predicting objects, actions, and identities from pictures or video.

Vision and graphics meet at a common point of pain: the model of scene geometry and appearance. To yield photorealistic results, graphics algorithms require an essentially perfect forward model. Yet, the capability of computer vision algorithms to robustly and accurately reason about the 3D shape and appearance of the world, unfortunately, greatly lags behind the capabilities to detect, recognize, segment, and so on. A great discrepancy exists between the semantic and the pixel-perfect, accurate shape and appearance. Bridging this chasm is the goal of this research.

This entails solving fundamental, long-standing, unsolved problems in computer vision through the aid of computer graphics and machine learning}. First, we seek to simultaneously capture accurate 3D shape and appearance of complex real-world scenes from photographic inputs; second, we seek to extend these capabilities still further to``zero-shot' generative modelling. These extremely ambitious goals will be reached by marrying simulation (rendering) and machine learning, building on the PI's three existing strengths: (1) ability to capture photorealistic material appearance models using commodity devices; (2) his leading standing in physically-based image synthesis; and (3) his results on generative modeling of photorealistic images through deep convolutional neural networks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PIPE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PIPE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

CN Identity (2019)

Comprehensive anatomical, genetic and functional identification of cerebellar nuclei neurons and their roles in sensorimotor tasks

Read More