Opendata, web and dolomites

MCT SIGNED

Metacomputational Complexity Theory

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MCT" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2022-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 212˙933.00

Map

 Project objective

The goal of the project is to advance our understanding of the central questions in Computational Complexity Theory such as the famous P versus NP problem.

Complexity Theory approaches questions about efficiency of computation by investigating lower and upper bounds on the complexity of concrete computational models such as Boolean circuits or propositional proof systems. Unfortunately, even after several decades of intense research the progress on the question of proving strong complexity lower bounds remains very incremental. In fact, several significant barrier results have been discovered, partially explaining the complexity of establishing complexity lower bounds. While the barrier results presented a serious obstacle they also revealed new structural properties of complexity lower bounds connecting lower bounds to the construction of efficient learning algorithms, cryptography or independence results in mathematical logic. The present project continues the development of these structural connections and complexity-theoretic properties of problems about complexity, which we shortly refer to as Metacomputational Complexity Theory. The objectives of the project can be divided into two groups.

1. Hardness magnification, exploring limits and consequences of an emerging theory of hardness magnification which arouse recently from investigations of metacomputational aspects of circuit lower bounds and received a lot of attention as a promising approach overcoming previously existing barriers for proving complexity lower bounds.

2. Structural theory, strengthening and generalizing connections between the methods for proving lower bounds and other central concepts of computer science, such as efficient learning algorithms, cryptographic primitives and automatizability of propositional proof systems, through the lens of mathematical logic.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MCT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MCT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PROTEAN (2019)

Prospective Environmental Assessment of Urban Agriculture Emerging-Systems

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

PocketLight (2020)

Compact all-fibre nonlinear resonators as technological platform for a new generation of miniaturised light sources.

Read More