Opendata, web and dolomites

APPLICAL SIGNED

Assessing the technical and business feasibility of Callose Enriched Plant Biomass as a solution for improving Biorefinery Industry processes and profit margins

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 APPLICAL project word cloud

Explore the words cloud of the APPLICAL project. It provides you a very rough idea of what is the project "APPLICAL" about.

industrial    pipelines    lignocellulosic    frequent    released    saccharification    chemicals    energy    demand    experiments    trials    climate    migrating    made    material    neutral    closer    sugar    commercialisation    fermentable    bioplastics    biofuels    penetration    industry    initial    outlook    margins    90    extraction    manageable    biomass    led    penalty    innovation    modified    effort    carry    recalcitrant    callose    linear    decreased    45    additional    markets    start    innovations    sources    economic    drawback    poplars    substantial    instance    intake    added    proof    investments    biorefinery    materials    ranging    proposes    2035    hampered    sugars    raw    green    pretreatment    recalcitrance    bioconversion    conversion    throughput    extensive    renewable    market    business    biorefineries    maturity       efficiency    genetically    carbon    bottleneck    biobiorefineries    breakthrough    profit    poc    time    yield    bioethanol    planning    introduction    patented    specialty    positive   

Project "APPLICAL" data sheet

The following table provides information about the project.

Coordinator
HELSINGIN YLIOPISTO 

Organization address
address: YLIOPISTONKATU 3
city: HELSINGIN YLIOPISTO
postcode: 14
website: www.helsinki.fi

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HELSINGIN YLIOPISTO FI (HELSINGIN YLIOPISTO) coordinator 150˙000.00

Map

 Project objective

BioBiorefineries are facing a positive economic outlook due to the ever-growing concerns for climate change, which is triggering demand towards carbon neutral materials and energy derived from renewable sources. However, the growth of the industry is hampered by their low profit margins and additional investments and innovations are needed to improve process efficiency. The key problem in migrating towards green production is the biomass recalcitrance, which is known to be a major bottleneck in the lignocellulosic biomass conversion process. The initial steps common to several biorefinery process pipelines, the extraction and sugar conversion process (saccharification), can account to as much as 40-45% of the process costs. Therefore, biorefineries can achieve extensive economic impact by addressing this part of their process through a simple business development effort. We recently made a breakthrough and obtained a biomass less recalcitrant to bioconversion into fermentable sugars. Results show that introduction of only 5% Callose in genetically modified poplars led to 90% more fermentable sugars released during saccharification experiments without any growth penalty, a frequent drawback for such innovations. In practice, this proposes added value to biorefineries through decreased raw material intake, improved throughput and improved yield. For instance, bioethanol production could expect a linear throughput increase (in the 50-90% range) with the same material intake. Moreover, the more manageable pretreatment process will also experience improved energy efficiency. In the PoC we will carry out technical proof-of-concept and commercialisation planning activities to improve the maturity, and bringing our patented innovation closer to the markets with applications ranging from biofuels, advanced materials and bioplastics to specialty chemicals. Our initial goal is to start industrial scale trials in 5 years time and achieve substantial market penetration by 2035.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "APPLICAL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "APPLICAL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

POAB (2019)

The Psychology of Administrative Burden

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More