Opendata, web and dolomites

APPLICAL SIGNED

Assessing the technical and business feasibility of Callose Enriched Plant Biomass as a solution for improving Biorefinery Industry processes and profit margins

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 APPLICAL project word cloud

Explore the words cloud of the APPLICAL project. It provides you a very rough idea of what is the project "APPLICAL" about.

extensive    recalcitrance    frequent    fermentable    yield    additional    sources    bioethanol    closer    bioconversion    extraction    pipelines    instance    industrial    chemicals    biobiorefineries    45    economic    poc    specialty    intake    investments    green    proof    added    outlook    saccharification    patented       throughput    industry    released    breakthrough    climate    lignocellulosic    markets    callose    linear    manageable    experiments    bioplastics    positive    renewable    trials    pretreatment    biomass    business    proposes    carbon    penetration    ranging    made    material    poplars    market    2035    biorefineries    commercialisation    penalty    sugar    recalcitrant    introduction    modified    demand    sugars    profit    biofuels    drawback    carry    neutral    innovation    conversion    90    genetically    time    hampered    raw    energy    decreased    initial    start    led    substantial    effort    materials    planning    biorefinery    margins    maturity    efficiency    innovations    migrating    bottleneck   

Project "APPLICAL" data sheet

The following table provides information about the project.

Coordinator
HELSINGIN YLIOPISTO 

Organization address
address: YLIOPISTONKATU 3
city: HELSINGIN YLIOPISTO
postcode: 14
website: www.helsinki.fi

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HELSINGIN YLIOPISTO FI (HELSINGIN YLIOPISTO) coordinator 150˙000.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

BioBiorefineries are facing a positive economic outlook due to the ever-growing concerns for climate change, which is triggering demand towards carbon neutral materials and energy derived from renewable sources. However, the growth of the industry is hampered by their low profit margins and additional investments and innovations are needed to improve process efficiency. The key problem in migrating towards green production is the biomass recalcitrance, which is known to be a major bottleneck in the lignocellulosic biomass conversion process. The initial steps common to several biorefinery process pipelines, the extraction and sugar conversion process (saccharification), can account to as much as 40-45% of the process costs. Therefore, biorefineries can achieve extensive economic impact by addressing this part of their process through a simple business development effort. We recently made a breakthrough and obtained a biomass less recalcitrant to bioconversion into fermentable sugars. Results show that introduction of only 5% Callose in genetically modified poplars led to 90% more fermentable sugars released during saccharification experiments without any growth penalty, a frequent drawback for such innovations. In practice, this proposes added value to biorefineries through decreased raw material intake, improved throughput and improved yield. For instance, bioethanol production could expect a linear throughput increase (in the 50-90% range) with the same material intake. Moreover, the more manageable pretreatment process will also experience improved energy efficiency. In the PoC we will carry out technical proof-of-concept and commercialisation planning activities to improve the maturity, and bringing our patented innovation closer to the markets with applications ranging from biofuels, advanced materials and bioplastics to specialty chemicals. Our initial goal is to start industrial scale trials in 5 years time and achieve substantial market penetration by 2035.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "APPLICAL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "APPLICAL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MCS-MD (2019)

The Molecular Dynamics of Membrane Contact Sites

Read More  

inSight (2019)

Moving a novel gene therapy paradigm to treat blindness to the market

Read More  

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More