Opendata, web and dolomites

SecondCANCERinKIDS SIGNED

What causes therapy-related malignancies in childhood cancer survivors? Dissecting the etiology of second cancers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SecondCANCERinKIDS" data sheet

The following table provides information about the project.

Coordinator
PRINSES MAXIMA CENTRUM VOOR KINDERONCOLOGIE BV 

Organization address
address: HEIDELBERGLAAN 25
city: UTRECHT
postcode: 3584CS
website: www.prinsesmaximacentrum.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    PRINSES MAXIMA CENTRUM VOOR KINDERONCOLOGIE BV NL (UTRECHT) coordinator 2˙000˙000.00

Map

 Project objective

Therapy-related malignancies are a major cause of long-term mortality among childhood cancer survivors. However, it is unclear how exposure to chemo- and/or radiotherapy early in life induces carcinogenesis. My aim is to determine the mechanisms and rate-limiting steps underlying the genesis of second malignancies in childhood cancer survivors. For this, we will focus on studying the etiology of therapy-related myeloid malignancies (t-MNs). I have pioneered methods to characterize mutation accumulation in single stem cells and study clonal lineages in the human hematopoietic system. My lab is embedded in Europe’s largest childhood cancer center, providing the opportunity to apply our techniques to unique patient material. In Objective 1, we will dissect the life history of t-MN and study its cellular origin. Our key question is: Was the original t-MN clone already present before chemotherapy exposure, or generated as a consequence thereof? We will address this by tracking back clonal lineages in the hematopoietic tissue of patients using the mutations present in their second cancers. In Objective 2, we will study the mutational consequences of chemotherapy in normal hematopoietic cells of children before and after they received treatment. Our key question is: Is enhanced mutagenesis rate limiting for t-MN development? To address this, we will perform in-depth mutational analyses and in vitro validations. In Objective 3, we will determine phenotypic effects of chemotherapy on population dynamics of blood. Our key question is: how does chemotherapy affect selection dynamics and clonal composition of blood? To address this, we will integrate clonal histories and lineage contributions using somatically acquired mutations. Our unique methodology and anticipated novel insights will not contribute to improved survival of children with cancer, but also to increased fundamental knowledge on the origin of cancer.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SECONDCANCERINKIDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SECONDCANCERINKIDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ZARAH (2020)

Women’s labour activism in Eastern Europe and transnationally, from the age of empires to the late 20th century

Read More  

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

ChaperoneRegulome (2020)

ChaperoneRegulome: Understanding cell-type-specificity of chaperone regulation

Read More